A-Chou Su, Ling-Yan Zhang, Jing-Ge Zhang, Yu-Yan Hu, Xi-Yun Liu, Shi-Chao Li, Xiao-Hui Xian, Wen-Bin Li, Min Zhang
{"title":"The Regulation of Autophagy by p38 MAPK-PPARγ Signaling During the Brain Ischemic Tolerance Induced by Cerebral Ischemic Preconditioning.","authors":"A-Chou Su, Ling-Yan Zhang, Jing-Ge Zhang, Yu-Yan Hu, Xi-Yun Liu, Shi-Chao Li, Xiao-Hui Xian, Wen-Bin Li, Min Zhang","doi":"10.1089/dna.2022.0087","DOIUrl":null,"url":null,"abstract":"<p><p>Several studies indicated that autophagy activation participates in brain ischemic tolerance (BIT) induced by cerebral ischemic preconditioning (CIP). However, the mechanism of autophagy activation during the process still remains unclear. The present study aimed to evaluate the role of p38 MAPK-peroxisome proliferator-activated receptor γ (PPARγ) signaling cascade in autophagy during the CIP-induced BIT. The results shown that, initially, autophagy activation was observed after CIP in the model of global cerebral ischemia in rats, as was indicated by the upregulation of Beclin 1 expression, an increase in LC3-II/LC3-I ratio, the enhanced LC3 immunofluorescence, and a rise in the number of autophagosomes in the neurons of the hippocampal CA1 area. Besides, the inhibitor of autophagy 3-methyladenine obliterated the neuroprotection induced by CIP. Furthermore, the upregulation of p-p38 MAPK and PPARγ expressions was earlier than autophagy activation after CIP. In addition, pretreatment with SB203580 (the inhibitor of p38 MAPK) reversed CIP-induced PPARγ upregulation, autophagy activation, and neuroprotection. Pretreatment with GW9662 (the inhibitor of PPARγ) reversed autophagy activation and neuroprotection, while it had no effect on p-p38 MAPK upregulation induced by CIP. These data suggested that the p38 MAPK-PPARγ signaling pathway participates in autophagy activation during the induction of BIT by CIP.</p>","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":"41 9","pages":"838-849"},"PeriodicalIF":2.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2022.0087","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Several studies indicated that autophagy activation participates in brain ischemic tolerance (BIT) induced by cerebral ischemic preconditioning (CIP). However, the mechanism of autophagy activation during the process still remains unclear. The present study aimed to evaluate the role of p38 MAPK-peroxisome proliferator-activated receptor γ (PPARγ) signaling cascade in autophagy during the CIP-induced BIT. The results shown that, initially, autophagy activation was observed after CIP in the model of global cerebral ischemia in rats, as was indicated by the upregulation of Beclin 1 expression, an increase in LC3-II/LC3-I ratio, the enhanced LC3 immunofluorescence, and a rise in the number of autophagosomes in the neurons of the hippocampal CA1 area. Besides, the inhibitor of autophagy 3-methyladenine obliterated the neuroprotection induced by CIP. Furthermore, the upregulation of p-p38 MAPK and PPARγ expressions was earlier than autophagy activation after CIP. In addition, pretreatment with SB203580 (the inhibitor of p38 MAPK) reversed CIP-induced PPARγ upregulation, autophagy activation, and neuroprotection. Pretreatment with GW9662 (the inhibitor of PPARγ) reversed autophagy activation and neuroprotection, while it had no effect on p-p38 MAPK upregulation induced by CIP. These data suggested that the p38 MAPK-PPARγ signaling pathway participates in autophagy activation during the induction of BIT by CIP.
期刊介绍:
DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward.
DNA and Cell Biology coverage includes:
Gene Structure, Function, and Regulation
Gene regulation
Molecular mechanisms of cell activation
Mechanisms of transcriptional, translational, or epigenetic control of gene expression
Molecular Medicine
Molecular pathogenesis
Genetic approaches to cancer and autoimmune diseases
Translational studies in cell and molecular biology
Cellular Organelles
Autophagy
Apoptosis
P bodies
Peroxisosomes
Protein Biosynthesis and Degradation
Regulation of protein synthesis
Post-translational modifications
Control of degradation
Cell-Autonomous Inflammation and Host Cell Response to Infection
Responses to cytokines and other physiological mediators
Evasive pathways of pathogens.