On a variant of Pillai's problem involving S-units and Fibonacci numbers.

IF 0.9 Q2 MATHEMATICS
Volker Ziegler
{"title":"On a variant of Pillai's problem involving <i>S</i>-units and Fibonacci numbers.","authors":"Volker Ziegler","doi":"10.1007/s40590-022-00450-7","DOIUrl":null,"url":null,"abstract":"<p><p>Let us denote by <math><msub><mi>F</mi> <mi>n</mi></msub> </math> the <i>n</i>-th Fibonacci number. In this paper we show that there exist at most finitely many integers <i>c</i> such that the exponential Diophantine equation <math> <mrow><msub><mi>F</mi> <mi>n</mi></msub> <mo>-</mo> <msup><mn>2</mn> <mi>x</mi></msup> <msup><mn>3</mn> <mi>y</mi></msup> <mo>=</mo> <mi>c</mi></mrow> </math> has more than one solution <math> <mrow><mrow><mo>(</mo> <mi>n</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo></mrow> <mo>∈</mo> <msup><mrow><mi>N</mi></mrow> <mn>3</mn></msup> </mrow> </math> with <math><mrow><mi>n</mi> <mo>></mo> <mn>1</mn></mrow> </math> . Moreover, in the case that <math><mrow><mi>c</mi> <mo>></mo> <mn>0</mn></mrow> </math> we find all integers <i>c</i> such that the Diophantine equation has at least three solutions and in the case that <math><mrow><mi>c</mi> <mo><</mo> <mn>0</mn></mrow> </math> we find all integers <i>c</i> such that the Diophantine equation has at least four solutions.</p>","PeriodicalId":45404,"journal":{"name":"BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287265/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40590-022-00450-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let us denote by F n the n-th Fibonacci number. In this paper we show that there exist at most finitely many integers c such that the exponential Diophantine equation F n - 2 x 3 y = c has more than one solution ( n , x , y ) N 3 with n > 1 . Moreover, in the case that c > 0 we find all integers c such that the Diophantine equation has at least three solutions and in the case that c < 0 we find all integers c such that the Diophantine equation has at least four solutions.

皮莱问题的一个变种,涉及s单位和斐波那契数。
我们用F n表示第n个斐波那契数。本文证明了指数丢芬图方程F n - 2 x 3 y = c有一个以上的解(n, x, y)∈n3且n > 1。而且,在c > 0的情况下,我们发现所有的整数c使得丢番图方程至少有三个解在c > 0的情况下,我们发现所有的整数c使得丢番图方程至少有四个解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
70
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信