LEARNING TO CORRECT AXIAL MOTION IN OCT FOR 3D RETINAL IMAGING.

Yiqian Wang, Alexandra Warter, Melina Cavichini-Cordeiro, William R Freeman, Dirk-Uwe G Bartsch, Truong Q Nguyen, Cheolhong An
{"title":"LEARNING TO CORRECT AXIAL MOTION IN OCT FOR 3D RETINAL IMAGING.","authors":"Yiqian Wang, Alexandra Warter, Melina Cavichini-Cordeiro, William R Freeman, Dirk-Uwe G Bartsch, Truong Q Nguyen, Cheolhong An","doi":"10.1109/icip42928.2021.9506620","DOIUrl":null,"url":null,"abstract":"<p><p>Optical Coherence Tomography (OCT) is a powerful technique for non-invasive 3D imaging of biological tissues at high resolution that has revolutionized retinal imaging. A major challenge in OCT imaging is the motion artifacts introduced by involuntary eye movements. In this paper, we propose a convolutional neural network that learns to correct axial motion in OCT based on a single volumetric scan. The proposed method is able to correct large motion, while preserving the overall curvature of the retina. The experimental results show significant improvements in visual quality as well as overall error compared to the conventional methods in both normal and disease cases.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":" ","pages":"126-130"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359411/pdf/nihms-1823145.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icip42928.2021.9506620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical Coherence Tomography (OCT) is a powerful technique for non-invasive 3D imaging of biological tissues at high resolution that has revolutionized retinal imaging. A major challenge in OCT imaging is the motion artifacts introduced by involuntary eye movements. In this paper, we propose a convolutional neural network that learns to correct axial motion in OCT based on a single volumetric scan. The proposed method is able to correct large motion, while preserving the overall curvature of the retina. The experimental results show significant improvements in visual quality as well as overall error compared to the conventional methods in both normal and disease cases.

Abstract Image

Abstract Image

学习校正三维视网膜成像中的轴向运动。
光学相干断层扫描(OCT)是一种功能强大的高分辨率生物组织无创三维成像技术,为视网膜成像带来了革命性的变化。OCT 成像的一大挑战是非自主眼球运动带来的运动伪影。在本文中,我们提出了一种卷积神经网络,它能学会根据单次容积扫描纠正 OCT 中的轴向运动。所提出的方法能够纠正大运动,同时保留视网膜的整体曲率。实验结果表明,在正常和疾病情况下,与传统方法相比,视觉质量和整体误差都有明显改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信