Dirk Douwes-Schultz, Shuo Sun, Alexandra M Schmidt, Erica E M Moodie
{"title":"Extended Bayesian endemic-epidemic models to incorporate mobility data into COVID-19 forecasting.","authors":"Dirk Douwes-Schultz, Shuo Sun, Alexandra M Schmidt, Erica E M Moodie","doi":"10.1002/cjs.11723","DOIUrl":null,"url":null,"abstract":"<p><p>Forecasting the number of daily COVID-19 cases is critical in the short-term planning of hospital and other public resources. One potentially important piece of information for forecasting COVID-19 cases is mobile device location data that measure the amount of time an individual spends at home. Endemic-epidemic (EE) time series models are recently proposed autoregressive models where the current mean case count is modelled as a weighted average of past case counts multiplied by an autoregressive rate, plus an endemic component. We extend EE models to include a distributed-lag model in order to investigate the association between mobility and the number of reported COVID-19 cases; we additionally include a weekly first-order random walk to capture additional temporal variation. Further, we introduce a shifted negative binomial weighting scheme for the past counts that is more flexible than previously proposed weighting schemes. We perform inference under a Bayesian framework to incorporate parameter uncertainty into model forecasts. We illustrate our methods using data from four US counties.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9349401/pdf/CJS-50-713.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/cjs.11723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Forecasting the number of daily COVID-19 cases is critical in the short-term planning of hospital and other public resources. One potentially important piece of information for forecasting COVID-19 cases is mobile device location data that measure the amount of time an individual spends at home. Endemic-epidemic (EE) time series models are recently proposed autoregressive models where the current mean case count is modelled as a weighted average of past case counts multiplied by an autoregressive rate, plus an endemic component. We extend EE models to include a distributed-lag model in order to investigate the association between mobility and the number of reported COVID-19 cases; we additionally include a weekly first-order random walk to capture additional temporal variation. Further, we introduce a shifted negative binomial weighting scheme for the past counts that is more flexible than previously proposed weighting schemes. We perform inference under a Bayesian framework to incorporate parameter uncertainty into model forecasts. We illustrate our methods using data from four US counties.