Goiter in a 6-year-old patient with novel thyroglobulin gene variant (Gly145Glu) causing intracellular thyroglobulin transport disorder: Correlation between goiter size and the free T3 to free T4 ratio.
{"title":"Goiter in a 6-year-old patient with novel thyroglobulin gene variant (Gly145Glu) causing intracellular thyroglobulin transport disorder: Correlation between goiter size and the free T3 to free T4 ratio.","authors":"Misayo Matsuyama, Hirotake Sawada, Shinobu Inoue, Akira Hishinuma, Ryo Sekiya, Yuichiro Sato, Hiroshi Moritake","doi":"10.1297/cpe.2022-0006","DOIUrl":null,"url":null,"abstract":"<p><p>Thyroglobulin gene abnormalities cause thyroid dyshormonogenesis. A 6-yr-old boy of consanguineous parents presented with a large goiter and mild hypothyroidism (thyroid-stimulating hormone [TSH] 7.2 μIU/mL, free T3 [FT3] 3.4 pg/mL, free T4 [FT4] 0.6 ng/dL). Despite levothyroxine (LT4) administration and normal TSH levels, the goiter progressed slowly and increased rapidly in size at the onset of puberty. Thyroid scintigraphy revealed a remarkably high <sup>123</sup>I uptake of 75.2%, with a serum thyroglobulin level of 13 ng/ml, which was disproportionately low for the goiter size. DNA sequencing revealed a novel homozygous missense variant, c.434G>A [p.Gly145Glu], in the thyroglobulin gene. Goiter growth was suppressed by increasing the LT4 dose. Thyroidectomy was performed at 17-yr-of-age. Thyroglobulin analysis of the thyroid tissue detected mutant thyroglobulin present in the endoplasmic reticulum, demonstrating that thyroglobulin transport from the endoplasmic reticulum to the Golgi apparatus was impaired by the Gly145Glu variant. During the clinical course, an elevated FT3/FT4 ratio was observed along with thyroid enlargement. A high FT3/FT4 ratio and goiter seemed to be compensatory responses to impaired hormone synthesis. Thyroglobulin defects with goiter should be treated with LT4, even if TSH levels are normal.</p>","PeriodicalId":10678,"journal":{"name":"Clinical Pediatric Endocrinology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1d/21/cpe-31-185.PMC9297170.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pediatric Endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1297/cpe.2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Thyroglobulin gene abnormalities cause thyroid dyshormonogenesis. A 6-yr-old boy of consanguineous parents presented with a large goiter and mild hypothyroidism (thyroid-stimulating hormone [TSH] 7.2 μIU/mL, free T3 [FT3] 3.4 pg/mL, free T4 [FT4] 0.6 ng/dL). Despite levothyroxine (LT4) administration and normal TSH levels, the goiter progressed slowly and increased rapidly in size at the onset of puberty. Thyroid scintigraphy revealed a remarkably high 123I uptake of 75.2%, with a serum thyroglobulin level of 13 ng/ml, which was disproportionately low for the goiter size. DNA sequencing revealed a novel homozygous missense variant, c.434G>A [p.Gly145Glu], in the thyroglobulin gene. Goiter growth was suppressed by increasing the LT4 dose. Thyroidectomy was performed at 17-yr-of-age. Thyroglobulin analysis of the thyroid tissue detected mutant thyroglobulin present in the endoplasmic reticulum, demonstrating that thyroglobulin transport from the endoplasmic reticulum to the Golgi apparatus was impaired by the Gly145Glu variant. During the clinical course, an elevated FT3/FT4 ratio was observed along with thyroid enlargement. A high FT3/FT4 ratio and goiter seemed to be compensatory responses to impaired hormone synthesis. Thyroglobulin defects with goiter should be treated with LT4, even if TSH levels are normal.