{"title":"A Combinational Approach for More Efficient miRNA Biosensing.","authors":"Cheolho Lee","doi":"10.2174/1389202923666220204160912","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs, short single-stranded noncoding RNAs ranging in length from 18 ~ 24 bp, are found in all kingdoms of eukaryotes and even viruses. It was found that miRNAs are involved in a variety of biological processes, and their intracellular aberrant expression is related to diseases and abnormalities in the immune system. Since then, it has been considered essential to develop an efficient miRNA detection system. In this review, the limitations of traditional scheme-based miRNA detection methods are compared and analyzed. In particular, nucleic acid amplification-based miRNA detection methods and nanomaterial-based miRNA detection methods, which are widely used as a biosensing platform because of various features and advantages, such as high sensitivity, specificity, and simplicity, are analyzed. Based on this analysis, the latest examples of a combination of the advantages of nucleic acid amplification and those of nanomaterials are examined to suggest the characteristics of the next-generation miRNA biosensing.</p>","PeriodicalId":10803,"journal":{"name":"Current Genomics","volume":"23 1","pages":"5-25"},"PeriodicalIF":1.8000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ab/c7/CG-23-5.PMC9199536.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389202923666220204160912","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
MicroRNAs, short single-stranded noncoding RNAs ranging in length from 18 ~ 24 bp, are found in all kingdoms of eukaryotes and even viruses. It was found that miRNAs are involved in a variety of biological processes, and their intracellular aberrant expression is related to diseases and abnormalities in the immune system. Since then, it has been considered essential to develop an efficient miRNA detection system. In this review, the limitations of traditional scheme-based miRNA detection methods are compared and analyzed. In particular, nucleic acid amplification-based miRNA detection methods and nanomaterial-based miRNA detection methods, which are widely used as a biosensing platform because of various features and advantages, such as high sensitivity, specificity, and simplicity, are analyzed. Based on this analysis, the latest examples of a combination of the advantages of nucleic acid amplification and those of nanomaterials are examined to suggest the characteristics of the next-generation miRNA biosensing.
期刊介绍:
Current Genomics is a peer-reviewed journal that provides essential reading about the latest and most important developments in genome science and related fields of research. Systems biology, systems modeling, machine learning, network inference, bioinformatics, computational biology, epigenetics, single cell genomics, extracellular vesicles, quantitative biology, and synthetic biology for the study of evolution, development, maintenance, aging and that of human health, human diseases, clinical genomics and precision medicine are topics of particular interest. The journal covers plant genomics. The journal will not consider articles dealing with breeding and livestock.
Current Genomics publishes three types of articles including:
i) Research papers from internationally-recognized experts reporting on new and original data generated at the genome scale level. Position papers dealing with new or challenging methodological approaches, whether experimental or mathematical, are greatly welcome in this section.
ii) Authoritative and comprehensive full-length or mini reviews from widely recognized experts, covering the latest developments in genome science and related fields of research such as systems biology, statistics and machine learning, quantitative biology, and precision medicine. Proposals for mini-hot topics (2-3 review papers) and full hot topics (6-8 review papers) guest edited by internationally-recognized experts are welcome in this section. Hot topic proposals should not contain original data and they should contain articles originating from at least 2 different countries.
iii) Opinion papers from internationally recognized experts addressing contemporary questions and issues in the field of genome science and systems biology and basic and clinical research practices.