T F Cardoso, J J Bruscadin, J Afonso, J Petrini, B G N Andrade, P S N de Oliveira, J M Malheiros, M I P Rocha, A Zerlotini, J B S Ferraz, G B Mourão, L L Coutinho, L C A Regitano
{"title":"EEF1A1 transcription cofactor gene polymorphism is associated with muscle gene expression and residual feed intake in Nelore cattle.","authors":"T F Cardoso, J J Bruscadin, J Afonso, J Petrini, B G N Andrade, P S N de Oliveira, J M Malheiros, M I P Rocha, A Zerlotini, J B S Ferraz, G B Mourão, L L Coutinho, L C A Regitano","doi":"10.1007/s00335-022-09959-8","DOIUrl":null,"url":null,"abstract":"<p><p>Cis-acting effects of noncoding variants on gene expression and regulatory molecules constitute a significant factor for phenotypic variation in complex traits. To provide new insights into the impacts of single-nucleotide polymorphisms (SNPs) on transcription factors (TFs) and transcription cofactors (TcoF) coding genes, we carried out a multi-omic analysis to identify cis-regulatory effects of SNPs on these genes' expression in muscle and describe their association with feed efficiency-related traits in Nelore cattle. As a result, we identified one SNP, the rs137256008C > T, predicted to impact the EEF1A1 gene expression (β = 3.02; P-value = 3.51E-03) and the residual feed intake trait (β = - 3.47; P-value = 0.02). This SNP was predicted to modify transcription factor sites and overlaps with several QTL for feed efficiency traits. In addition, co-expression network analyses showed that animals containing the T allele of the rs137256008 SNP may be triggering changes in the gene network. Therefore, our analyses reinforce and contribute to a better understanding of the biological mechanisms underlying gene expression control of feed efficiency traits in bovines. The cis-regulatory SNP can be used as biomarker for feed efficiency in Nelore cattle.</p>","PeriodicalId":412165,"journal":{"name":"Mammalian genome : official journal of the International Mammalian Genome Society","volume":" ","pages":"619-628"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian genome : official journal of the International Mammalian Genome Society","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-022-09959-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cis-acting effects of noncoding variants on gene expression and regulatory molecules constitute a significant factor for phenotypic variation in complex traits. To provide new insights into the impacts of single-nucleotide polymorphisms (SNPs) on transcription factors (TFs) and transcription cofactors (TcoF) coding genes, we carried out a multi-omic analysis to identify cis-regulatory effects of SNPs on these genes' expression in muscle and describe their association with feed efficiency-related traits in Nelore cattle. As a result, we identified one SNP, the rs137256008C > T, predicted to impact the EEF1A1 gene expression (β = 3.02; P-value = 3.51E-03) and the residual feed intake trait (β = - 3.47; P-value = 0.02). This SNP was predicted to modify transcription factor sites and overlaps with several QTL for feed efficiency traits. In addition, co-expression network analyses showed that animals containing the T allele of the rs137256008 SNP may be triggering changes in the gene network. Therefore, our analyses reinforce and contribute to a better understanding of the biological mechanisms underlying gene expression control of feed efficiency traits in bovines. The cis-regulatory SNP can be used as biomarker for feed efficiency in Nelore cattle.