Johanna E M Dickmann, Jochen C Rink, Frank Jülicher
{"title":"Long-range morphogen gradient formation by cell-to-cell signal propagation.","authors":"Johanna E M Dickmann, Jochen C Rink, Frank Jülicher","doi":"10.1088/1478-3975/ac86b4","DOIUrl":null,"url":null,"abstract":"<p><p>Morphogen gradients are a central concept in developmental biology. Their formation often involves the secretion of morphogens from a local source, that spread by diffusion in the cell field, where molecules eventually get degraded. This implies limits to both the time and length scales over which morphogen gradients can form which are set by diffusion coefficients and degradation rates. Towards the goal of identifying plausible mechanisms capable of extending the gradient range, we here use theory to explore properties of a cell-to-cell signaling relay. Inspired by the millimeter-scale<i>wnt</i>-expression and signaling gradients in flatworms, we consider morphogen-mediated morphogen production in the cell field. We show that such a relay can generate stable morphogen and signaling gradients that are oriented by a local, morphogen-independent source of morphogen at a boundary. This gradient formation can be related to an effective diffusion and an effective degradation that result from morphogen production due to signaling relay. If the secretion of morphogen produced in response to the relay is polarized, it further gives rise to an effective drift. We find that signaling relay can generate long-range gradients in relevant times without relying on extreme choices of diffusion coefficients or degradation rates, thus exceeding the limits set by physiological diffusion coefficients and degradation rates. A signaling relay is hence an attractive principle to conceptualize long-range gradient formation by slowly diffusing morphogens that are relevant for patterning in adult contexts such as regeneration and tissue turn-over.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ac86b4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Morphogen gradients are a central concept in developmental biology. Their formation often involves the secretion of morphogens from a local source, that spread by diffusion in the cell field, where molecules eventually get degraded. This implies limits to both the time and length scales over which morphogen gradients can form which are set by diffusion coefficients and degradation rates. Towards the goal of identifying plausible mechanisms capable of extending the gradient range, we here use theory to explore properties of a cell-to-cell signaling relay. Inspired by the millimeter-scalewnt-expression and signaling gradients in flatworms, we consider morphogen-mediated morphogen production in the cell field. We show that such a relay can generate stable morphogen and signaling gradients that are oriented by a local, morphogen-independent source of morphogen at a boundary. This gradient formation can be related to an effective diffusion and an effective degradation that result from morphogen production due to signaling relay. If the secretion of morphogen produced in response to the relay is polarized, it further gives rise to an effective drift. We find that signaling relay can generate long-range gradients in relevant times without relying on extreme choices of diffusion coefficients or degradation rates, thus exceeding the limits set by physiological diffusion coefficients and degradation rates. A signaling relay is hence an attractive principle to conceptualize long-range gradient formation by slowly diffusing morphogens that are relevant for patterning in adult contexts such as regeneration and tissue turn-over.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.