Whole-heart ventricular arrhythmia modeling moving forward: Mechanistic insights and translational applications.

IF 2.9 Q2 BIOPHYSICS
Biophysics reviews Pub Date : 2021-09-01 Epub Date: 2021-09-28 DOI:10.1063/5.0058050
Eric Sung, Sevde Etoz, Yingnan Zhang, Natalia A Trayanova
{"title":"Whole-heart ventricular arrhythmia modeling moving forward: Mechanistic insights and translational applications.","authors":"Eric Sung,&nbsp;Sevde Etoz,&nbsp;Yingnan Zhang,&nbsp;Natalia A Trayanova","doi":"10.1063/5.0058050","DOIUrl":null,"url":null,"abstract":"<p><p>Ventricular arrhythmias are the primary cause of sudden cardiac death and one of the leading causes of mortality worldwide. Whole-heart computational modeling offers a unique approach for studying ventricular arrhythmias, offering vast potential for developing both a mechanistic understanding of ventricular arrhythmias and clinical applications for treatment. In this review, the fundamentals of whole-heart ventricular modeling and current methods of personalizing models using clinical data are presented. From this foundation, the authors summarize recent advances in whole-heart ventricular arrhythmia modeling. Efforts in gaining mechanistic insights into ventricular arrhythmias are discussed, in addition to other applications of models such as the assessment of novel therapeutics. The review emphasizes the unique benefits of computational modeling that allow for insights that are not obtainable by contemporary experimental or clinical means. Additionally, the clinical impact of modeling is explored, demonstrating how patient care is influenced by the information gained from ventricular arrhythmia models. The authors conclude with future perspectives about the direction of whole-heart ventricular arrhythmia modeling, outlining how advances in neural network methodologies hold the potential to reduce computational expense and permit for efficient whole-heart modeling.</p>","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588428/pdf/nihms-1843484.pdf","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0058050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 16

Abstract

Ventricular arrhythmias are the primary cause of sudden cardiac death and one of the leading causes of mortality worldwide. Whole-heart computational modeling offers a unique approach for studying ventricular arrhythmias, offering vast potential for developing both a mechanistic understanding of ventricular arrhythmias and clinical applications for treatment. In this review, the fundamentals of whole-heart ventricular modeling and current methods of personalizing models using clinical data are presented. From this foundation, the authors summarize recent advances in whole-heart ventricular arrhythmia modeling. Efforts in gaining mechanistic insights into ventricular arrhythmias are discussed, in addition to other applications of models such as the assessment of novel therapeutics. The review emphasizes the unique benefits of computational modeling that allow for insights that are not obtainable by contemporary experimental or clinical means. Additionally, the clinical impact of modeling is explored, demonstrating how patient care is influenced by the information gained from ventricular arrhythmia models. The authors conclude with future perspectives about the direction of whole-heart ventricular arrhythmia modeling, outlining how advances in neural network methodologies hold the potential to reduce computational expense and permit for efficient whole-heart modeling.

Abstract Image

全心室性心律失常建模向前发展:机制见解和转化应用。
室性心律失常是心源性猝死的主要原因,也是世界范围内死亡的主要原因之一。全心计算模型为研究室性心律失常提供了一种独特的方法,为室性心律失常的机理理解和临床治疗应用提供了巨大的潜力。在这篇综述中,介绍了全心心室建模的基本原理和目前使用临床数据个性化模型的方法。在此基础上,作者总结了全心室性心律失常模型的最新进展。在获得室性心律失常的机制见解的努力,除了模型的其他应用,如评估新的治疗方法进行了讨论。这篇综述强调了计算建模的独特优势,它可以提供当代实验或临床手段无法获得的见解。此外,还探讨了建模的临床影响,展示了从室性心律失常模型中获得的信息如何影响患者护理。作者总结了对全心室性心律失常建模方向的未来展望,概述了神经网络方法的进步如何具有降低计算费用和允许高效全心建模的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信