Pseudo-Riemannian geometry encodes information geometry in optimal transport.

Information geometry Pub Date : 2022-01-01 Epub Date: 2021-07-30 DOI:10.1007/s41884-021-00053-7
Ting-Kam Leonard Wong, Jiaowen Yang
{"title":"Pseudo-Riemannian geometry encodes information geometry in optimal transport.","authors":"Ting-Kam Leonard Wong,&nbsp;Jiaowen Yang","doi":"10.1007/s41884-021-00053-7","DOIUrl":null,"url":null,"abstract":"<p><p>Optimal transport and information geometry both study geometric structures on spaces of probability distributions. Optimal transport characterizes the cost-minimizing movement from one distribution to another, while information geometry originates from coordinate invariant properties of statistical inference. Their relations and applications in statistics and machine learning have started to gain more attention. In this paper we give a new differential-geometric relation between the two fields. Namely, the pseudo-Riemannian framework of Kim and McCann, which provides a geometric perspective on the fundamental Ma-Trudinger-Wang (MTW) condition in the regularity theory of optimal transport maps, encodes the dualistic structure of statistical manifold. This general relation is described using the framework of <i>c</i>-divergence under which divergences are defined by optimal transport maps. As a by-product, we obtain a new information-geometric interpretation of the MTW tensor on the graph of the transport map. This relation sheds light on old and new aspects of information geometry. The dually flat geometry of Bregman divergence corresponds to the quadratic cost and the pseudo-Euclidean space, and the logarithmic <math><msup><mi>L</mi> <mrow><mo>(</mo> <mi>α</mi> <mo>)</mo></mrow> </msup> </math> -divergence introduced by Pal and the first author has constant sectional curvature in a sense to be made precise. In these cases we give a geometric interpretation of the information-geometric curvature in terms of the divergence between a primal-dual pair of geodesics.</p>","PeriodicalId":93762,"journal":{"name":"Information geometry","volume":"5 1","pages":"131-159"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9296067/pdf/","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41884-021-00053-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Optimal transport and information geometry both study geometric structures on spaces of probability distributions. Optimal transport characterizes the cost-minimizing movement from one distribution to another, while information geometry originates from coordinate invariant properties of statistical inference. Their relations and applications in statistics and machine learning have started to gain more attention. In this paper we give a new differential-geometric relation between the two fields. Namely, the pseudo-Riemannian framework of Kim and McCann, which provides a geometric perspective on the fundamental Ma-Trudinger-Wang (MTW) condition in the regularity theory of optimal transport maps, encodes the dualistic structure of statistical manifold. This general relation is described using the framework of c-divergence under which divergences are defined by optimal transport maps. As a by-product, we obtain a new information-geometric interpretation of the MTW tensor on the graph of the transport map. This relation sheds light on old and new aspects of information geometry. The dually flat geometry of Bregman divergence corresponds to the quadratic cost and the pseudo-Euclidean space, and the logarithmic L ( α ) -divergence introduced by Pal and the first author has constant sectional curvature in a sense to be made precise. In these cases we give a geometric interpretation of the information-geometric curvature in terms of the divergence between a primal-dual pair of geodesics.

Abstract Image

Abstract Image

Abstract Image

伪黎曼几何编码最优传输中的信息几何。
最优传输和信息几何都是研究概率分布空间上的几何结构。最优运输的特征是从一个分布到另一个分布的成本最小化运动,而信息几何来源于统计推断的坐标不变性。它们在统计学和机器学习中的关系和应用已经开始获得更多的关注。本文给出了这两个场之间的一种新的微分几何关系。也就是说,Kim和McCann的伪黎曼框架为最优运输映射正则性理论中的基本Ma-Trudinger-Wang (MTW)条件提供了一个几何视角,编码了统计流形的对偶结构。这种一般关系是用c-散度的框架来描述的,在c-散度的框架下,散度由最优运输图来定义。作为一个副产品,我们得到了运输图上MTW张量的一个新的信息几何解释。这种关系揭示了信息几何的新旧方面。布雷格曼散度的对偶平面几何对应于二次代价和伪欧几里得空间,Pal和第一作者引入的对数L (α) -散度在一定意义上具有恒定的截面曲率。在这些情况下,我们给出了一个几何解释的信息-几何曲率的发散在一个原始对偶对测地线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信