On Rectifiable Measures in Carnot Groups: Existence of Density.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2022-01-01 Epub Date: 2022-07-18 DOI:10.1007/s12220-022-00971-7
Gioacchino Antonelli, Andrea Merlo
{"title":"On Rectifiable Measures in Carnot Groups: Existence of Density.","authors":"Gioacchino Antonelli,&nbsp;Andrea Merlo","doi":"10.1007/s12220-022-00971-7","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we start a detailed study of a new notion of rectifiability in Carnot groups: we say that a Radon measure is <math><msub><mi>P</mi> <mi>h</mi></msub> </math> -rectifiable, for <math><mrow><mi>h</mi> <mo>∈</mo> <mi>N</mi></mrow> </math> , if it has positive <i>h</i>-lower density and finite <i>h</i>-upper density almost everywhere, and, at almost every point, it admits a unique tangent measure up to multiples. First, we compare <math><msub><mi>P</mi> <mi>h</mi></msub> </math> -rectifiability with other notions of rectifiability previously known in the literature in the setting of Carnot groups, and we prove that it is strictly weaker than them. Second, we prove several structure properties of <math><msub><mi>P</mi> <mi>h</mi></msub> </math> -rectifiable measures. Namely, we prove that the support of a <math><msub><mi>P</mi> <mi>h</mi></msub> </math> -rectifiable measure is almost everywhere covered by sets satisfying a cone-like property, and in the particular case of <math><msub><mi>P</mi> <mi>h</mi></msub> </math> -rectifiable measures with complemented tangents, we show that they are supported on the union of intrinsically Lipschitz and differentiable graphs. Such a covering property is used to prove the main result of this paper: we show that a <math><msub><mi>P</mi> <mi>h</mi></msub> </math> -rectifiable measure has almost everywhere positive and finite <i>h</i>-density whenever the tangents admit at least one complementary subgroup.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"32 9","pages":"239"},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293879/pdf/","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-022-00971-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we start a detailed study of a new notion of rectifiability in Carnot groups: we say that a Radon measure is P h -rectifiable, for h N , if it has positive h-lower density and finite h-upper density almost everywhere, and, at almost every point, it admits a unique tangent measure up to multiples. First, we compare P h -rectifiability with other notions of rectifiability previously known in the literature in the setting of Carnot groups, and we prove that it is strictly weaker than them. Second, we prove several structure properties of P h -rectifiable measures. Namely, we prove that the support of a P h -rectifiable measure is almost everywhere covered by sets satisfying a cone-like property, and in the particular case of P h -rectifiable measures with complemented tangents, we show that they are supported on the union of intrinsically Lipschitz and differentiable graphs. Such a covering property is used to prove the main result of this paper: we show that a P h -rectifiable measure has almost everywhere positive and finite h-density whenever the tangents admit at least one complementary subgroup.

卡诺群中的可校正测度:密度的存在性。
本文详细研究了卡诺群中可纠偏性的一个新概念:对于h∈N,如果Radon测度几乎处处具有正的h-下密度和有限的h-上密度,并且在几乎每一点上,它都有一个唯一的可纠偏测度。首先,我们将h -可纠偏性与文献中已知的卡诺群背景下的其他可纠偏性概念进行了比较,证明了h -可纠偏性严格弱于它们。其次,我们证明了ph可整流措施的几个结构性质。也就是说,我们证明了h -可整流测度的支持几乎处处被满足锥状性质的集合所覆盖,并且在具有互补切线的h -可整流测度的特殊情况下,我们证明了它们在本质Lipschitz图与可微图的并集上是支持的。利用这一覆盖性质证明了本文的主要结果:我们证明了当切线至少有一个互补子群时,h可整流测度几乎处处具有正的有限h密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信