{"title":"Stratification of risk of atherosclerotic plaque using Hu's moment invariants of segmented ultrasonic images.","authors":"Smitha Balakrishnan, Paul K Joseph","doi":"10.1515/bmt-2021-0044","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial infarction is one of the major life-threatening diseases. The cause is atherosclerosis i.e. the occlusion of the coronary artery by deposition of plaque on its walls. The severity of plaque deposition in the artery depends on the characteristics of the plaque. Hence, the classification of the type of plaque is crucial for assessing the risk of atherosclerosis and predicting the chances of myocardial infarction. This paper proposes prediction of atherosclerotic risk by non-invasive ultrasound image segmentation and textural feature extraction. The intima-media complex is segmented using a snakes-based segmentation algorithm on the arterial wall in the ultrasound images. Then, the plaque is extracted from the segmented intima-media complex. The features of the plaque are obtained by computing Hu's moment invariants. Visual pattern recognition independent of position, size, orientation and parallel projection could be done using these moment invariants. For the classification of the features of the plaque, an SVM classifier is used. The performance shows improvement in accuracy using lesser number of features than previous works. The reduction in feature size is achieved by incorporating segmentation in the pre-processing stage. Tenfold cross-validation protocol is used for training and testing the classifier. An accuracy of 97.9% is obtained with only two features. This proposed technique could work as an adjunct tool in quick decision-making for cardiologists and radiologists. The segmentation step introduced in the preprocessing stage improved the feature extraction technique. An improvement in performance is achieved with much less number of features.</p>","PeriodicalId":8900,"journal":{"name":"Biomedical Engineering / Biomedizinische Technik","volume":"67 5","pages":"391-402"},"PeriodicalIF":1.3000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering / Biomedizinische Technik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2021-0044","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/26 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Myocardial infarction is one of the major life-threatening diseases. The cause is atherosclerosis i.e. the occlusion of the coronary artery by deposition of plaque on its walls. The severity of plaque deposition in the artery depends on the characteristics of the plaque. Hence, the classification of the type of plaque is crucial for assessing the risk of atherosclerosis and predicting the chances of myocardial infarction. This paper proposes prediction of atherosclerotic risk by non-invasive ultrasound image segmentation and textural feature extraction. The intima-media complex is segmented using a snakes-based segmentation algorithm on the arterial wall in the ultrasound images. Then, the plaque is extracted from the segmented intima-media complex. The features of the plaque are obtained by computing Hu's moment invariants. Visual pattern recognition independent of position, size, orientation and parallel projection could be done using these moment invariants. For the classification of the features of the plaque, an SVM classifier is used. The performance shows improvement in accuracy using lesser number of features than previous works. The reduction in feature size is achieved by incorporating segmentation in the pre-processing stage. Tenfold cross-validation protocol is used for training and testing the classifier. An accuracy of 97.9% is obtained with only two features. This proposed technique could work as an adjunct tool in quick decision-making for cardiologists and radiologists. The segmentation step introduced in the preprocessing stage improved the feature extraction technique. An improvement in performance is achieved with much less number of features.
期刊介绍:
Biomedical Engineering / Biomedizinische Technik (BMT) is a high-quality forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering. As an established journal with a tradition of more than 60 years, BMT addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice.