HOW DOES THE LATENCY PERIOD IMPACT THE MODELING OF COVID-19 TRANSMISSION DYNAMICS?

IF 0.4 Q4 MATHEMATICS, APPLIED
Mathematics in applied sciences and engineering Pub Date : 2022-03-30 Epub Date: 2022-02-20 DOI:10.5206/mase/14537
Ben Patterson, Jin Wang
{"title":"HOW DOES THE LATENCY PERIOD IMPACT THE MODELING OF COVID-19 TRANSMISSION DYNAMICS?","authors":"Ben Patterson,&nbsp;Jin Wang","doi":"10.5206/mase/14537","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce two mathematical models based on systems of differential equations to investigate the relationship between the latency period and the transmission dynamics of COVID-19. We analyze the equilibrium and stability properties of these models, and perform an asymptotic study in terms of small and large latency periods. We fit the models to the COVID-19 data in the U.S. state of Tennessee. Our numerical results demonstrate the impact of the latency period on the dynamical behaviors of the solutions, on the value of the basic reproduction numbers, and on the accuracy of the model predictions.</p>","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":"3 1","pages":"60-85"},"PeriodicalIF":0.4000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302022/pdf/nihms-1821943.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/14537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

We introduce two mathematical models based on systems of differential equations to investigate the relationship between the latency period and the transmission dynamics of COVID-19. We analyze the equilibrium and stability properties of these models, and perform an asymptotic study in terms of small and large latency periods. We fit the models to the COVID-19 data in the U.S. state of Tennessee. Our numerical results demonstrate the impact of the latency period on the dynamical behaviors of the solutions, on the value of the basic reproduction numbers, and on the accuracy of the model predictions.

Abstract Image

Abstract Image

潜伏期如何影响COVID-19传播动力学建模?
我们引入两个基于微分方程组的数学模型,研究潜伏期与COVID-19传播动态之间的关系。我们分析了这些模型的平衡和稳定性,并在小潜伏期和大潜伏期方面进行了渐近研究。我们将这些模型与美国田纳西州的COVID-19数据拟合。我们的数值结果证明了潜伏期对解的动力学行为、对基本再现数的值以及对模型预测精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信