An Agmon-Allegretto-Piepenbrink principle for Schrödinger operators.

IF 1.8 2区 数学 Q1 MATHEMATICS
Stefano Buccheri, Luigi Orsina, Augusto C Ponce
{"title":"An Agmon-Allegretto-Piepenbrink principle for Schrödinger operators.","authors":"Stefano Buccheri, Luigi Orsina, Augusto C Ponce","doi":"10.1007/s13398-022-01293-7","DOIUrl":null,"url":null,"abstract":"<p><p>We prove that each Borel function <math><mrow><mi>V</mi> <mo>:</mo> <mi>Ω</mi> <mo>→</mo> <mo>[</mo> <mrow><mo>-</mo> <mi>∞</mi></mrow> <mo>,</mo> <mo>+</mo> <mi>∞</mi> <mo>]</mo></mrow> </math> defined on an open subset <math><mrow><mi>Ω</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>N</mi></msup> </mrow> </math> induces a decomposition <math><mrow><mi>Ω</mi> <mo>=</mo> <mi>S</mi> <mo>∪</mo> <msub><mo>⋃</mo> <mi>i</mi></msub> <msub><mi>D</mi> <mi>i</mi></msub> </mrow> </math> such that every function in <math> <mrow><msubsup><mi>W</mi> <mn>0</mn> <mrow><mn>1</mn> <mo>,</mo> <mn>2</mn></mrow> </msubsup> <mrow><mo>(</mo> <mi>Ω</mi> <mo>)</mo></mrow> <mo>∩</mo> <msup><mi>L</mi> <mn>2</mn></msup> <mrow><mo>(</mo> <mi>Ω</mi> <mo>;</mo> <msup><mi>V</mi> <mo>+</mo></msup> <mspace></mspace> <mi>d</mi> <mi>x</mi> <mo>)</mo></mrow> </mrow> </math> is zero almost everywhere on <i>S</i> and existence of nonnegative supersolutions of <math><mrow><mo>-</mo> <mi>Δ</mi> <mo>+</mo> <mi>V</mi></mrow> </math> on each component <math><msub><mi>D</mi> <mi>i</mi></msub> </math> yields nonnegativity of the associated quadratic form <math> <mrow><msub><mo>∫</mo> <msub><mi>D</mi> <mi>i</mi></msub> </msub> <msup><mrow><mo>(</mo> <mo>|</mo> <mi>∇</mi> <mi>ξ</mi> <mo>|</mo></mrow> <mn>2</mn></msup> <mo>+</mo> <mi>V</mi> <msup><mi>ξ</mi> <mn>2</mn></msup> <mrow><mo>)</mo> <mo>.</mo></mrow> </mrow></math>.</p>","PeriodicalId":54471,"journal":{"name":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","volume":"116 4","pages":"151"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279265/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13398-022-01293-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that each Borel function V : Ω [ - , + ] defined on an open subset Ω R N induces a decomposition Ω = S i D i such that every function in W 0 1 , 2 ( Ω ) L 2 ( Ω ; V + d x ) is zero almost everywhere on S and existence of nonnegative supersolutions of - Δ + V on each component D i yields nonnegativity of the associated quadratic form D i ( | ξ | 2 + V ξ 2 ) . .

薛定谔算子的阿格蒙-阿列格雷托-皮彭布林克原理
我们证明,每个 Borel 函数 V :Ω → [ - ∞ , + ∞ ] 定义在开放子集 Ω ⊂ R N 上,会诱导一个分解 Ω = S∪ ⋃ i D i,使得 W 0 1 , 2 ( Ω ) ∩ L 2 ( Ω ;V + d x ) 在 S 上几乎处处为零,并且在每个分量 D i 上存在 - Δ + V 的非负超解,从而得到相关二次型 ∫ D i ( |∇ ξ | 2 + V ξ 2 ) 的非负性。.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
17.20%
发文量
151
审稿时长
>12 weeks
期刊介绍: The journal publishes, in English language only, high-quality Research Articles covering Algebra; Applied Mathematics; Computational Sciences; Geometry and Topology; Mathematical Analysis; Statistics and Operations Research. Also featured are Survey Articles in every mathematical field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信