Deciphering the conformational dynamics of gephyrin-mediated collybistin activation.

IF 2.4 Q3 BIOPHYSICS
Biophysical reports Pub Date : 2022-09-16 eCollection Date: 2022-12-14 DOI:10.1016/j.bpr.2022.100079
Nasir Imam, Susobhan Choudhury, Katherina Hemmen, Katrin G Heinze, Hermann Schindelin
{"title":"Deciphering the conformational dynamics of gephyrin-mediated collybistin activation.","authors":"Nasir Imam,&nbsp;Susobhan Choudhury,&nbsp;Katherina Hemmen,&nbsp;Katrin G Heinze,&nbsp;Hermann Schindelin","doi":"10.1016/j.bpr.2022.100079","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient neuronal signaling depends on the proper assembly of the postsynaptic neurotransmitter machinery. The majority of inhibitory synapses feature γ-aminobutyric acid type A (GABA<sub>A</sub>) receptors. The function of these GABAergic synapses is controlled by the scaffolding protein gephyrin and collybistin, a Dbl family guanine nucleotide exchange factor and neuronal adaptor protein. Specifically, collybistin interacts with small GTPases, cell adhesion proteins, and phosphoinositides to recruit gephyrin and GABA<sub>A</sub> receptors to postsynaptic membrane specializations. Collybistin usually contains an N-terminal SH3 domain and exists in closed/inactive or open/active states. Here, we elucidate the molecular basis of the gephyrin-collybistin interaction with newly designed collybistin Förster resonance energy transfer (FRET) sensors. Using fluorescence lifetime-based FRET measurements, we deduce the affinity of the gephyrin-collybistin complex, thereby confirming that the C-terminal dimer-forming E domain binds collybistin, an interaction that does not require E domain dimerization. Simulations based on fluorescence lifetime and sensor distance distributions reveal at least a two-state equilibrium of the SH3 domain already in the free/unbound collybistin, thereby illustrating the accessible volume of the SH3 domain. Finally, our data provide strong evidence for a tightly regulated collybistin-gephyrin interplay, where, unexpectedly, switching of collybistin from closed/inactive to open/active states is efficiently triggered by gephyrin.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f8/6c/main.PMC9680708.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2022.100079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/14 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

Efficient neuronal signaling depends on the proper assembly of the postsynaptic neurotransmitter machinery. The majority of inhibitory synapses feature γ-aminobutyric acid type A (GABAA) receptors. The function of these GABAergic synapses is controlled by the scaffolding protein gephyrin and collybistin, a Dbl family guanine nucleotide exchange factor and neuronal adaptor protein. Specifically, collybistin interacts with small GTPases, cell adhesion proteins, and phosphoinositides to recruit gephyrin and GABAA receptors to postsynaptic membrane specializations. Collybistin usually contains an N-terminal SH3 domain and exists in closed/inactive or open/active states. Here, we elucidate the molecular basis of the gephyrin-collybistin interaction with newly designed collybistin Förster resonance energy transfer (FRET) sensors. Using fluorescence lifetime-based FRET measurements, we deduce the affinity of the gephyrin-collybistin complex, thereby confirming that the C-terminal dimer-forming E domain binds collybistin, an interaction that does not require E domain dimerization. Simulations based on fluorescence lifetime and sensor distance distributions reveal at least a two-state equilibrium of the SH3 domain already in the free/unbound collybistin, thereby illustrating the accessible volume of the SH3 domain. Finally, our data provide strong evidence for a tightly regulated collybistin-gephyrin interplay, where, unexpectedly, switching of collybistin from closed/inactive to open/active states is efficiently triggered by gephyrin.

Abstract Image

Abstract Image

Abstract Image

破译格菲林介导的溶栓素激活的构象动力学。
有效的神经元信号传导依赖于突触后神经递质机制的正确组装。大多数抑制性突触具有γ-氨基丁酸A型(GABAA)受体。这些gaba能突触的功能由支架蛋白gephyrin和collybistin、Dbl家族鸟嘌呤核苷酸交换因子和神经元接头蛋白控制。具体来说,结肠菌素与小的gtpase、细胞粘附蛋白和磷酸肌苷相互作用,以募集gephyrin和GABAA受体参与突触后膜特化。Collybistin通常含有一个n端SH3结构域,存在于闭合/非活性或开放/活性状态。在这里,我们用新设计的collybistin Förster共振能量转移(FRET)传感器阐明了gephyrin-collybistin相互作用的分子基础。利用基于荧光寿命的FRET测量,我们推断出了gephyrin-collybistin复合物的亲和力,从而证实了c端形成二聚体的E结构域与collybistin结合,这种相互作用不需要E结构域二聚化。基于荧光寿命和传感器距离分布的模拟显示,自由/未结合的粘连蛋白中至少存在SH3结构域的两态平衡,从而说明了SH3结构域的可访问体积。最后,我们的数据提供了强有力的证据,证明了一个严格调节的结肠粘连蛋白-绿藻苷相互作用,其中,出乎意料的是,结肠粘连蛋白从关闭/非活性状态切换到打开/活性状态是由绿藻苷有效地触发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信