Alexander S Moffett, Guiying Cui, Peter J Thomas, William D Hunt, Nael A McCarty, Ryan S Westafer, Andrew W Eckford
{"title":"Permissive and nonpermissive channel closings in CFTR revealed by a factor graph inference algorithm.","authors":"Alexander S Moffett, Guiying Cui, Peter J Thomas, William D Hunt, Nael A McCarty, Ryan S Westafer, Andrew W Eckford","doi":"10.1016/j.bpr.2022.100083","DOIUrl":null,"url":null,"abstract":"<p><p>The closing of the gated ion channel in the cystic fibrosis transmembrane conductance regulator can be categorized as nonpermissive to reopening, which involves the unbinding of ADP or ATP, or permissive, which does not. Identifying the type of closing is of interest as interactions with nucleotides can be affected in mutants or by introducing agonists. However, all closings are electrically silent and difficult to differentiate. For single-channel patch-clamp traces, we show that the type of the closing can be accurately determined by an inference algorithm implemented on a factor graph, which we demonstrate using both simulated and lab-obtained patch-clamp traces.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680790/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2022.100083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/14 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The closing of the gated ion channel in the cystic fibrosis transmembrane conductance regulator can be categorized as nonpermissive to reopening, which involves the unbinding of ADP or ATP, or permissive, which does not. Identifying the type of closing is of interest as interactions with nucleotides can be affected in mutants or by introducing agonists. However, all closings are electrically silent and difficult to differentiate. For single-channel patch-clamp traces, we show that the type of the closing can be accurately determined by an inference algorithm implemented on a factor graph, which we demonstrate using both simulated and lab-obtained patch-clamp traces.