Transcriptome Dedifferentiation Observed in Animal Primary Cultures is Essential to Plant Reprogramming.

Norichika Ogata
{"title":"Transcriptome Dedifferentiation Observed in Animal Primary Cultures is Essential to Plant Reprogramming.","authors":"Norichika Ogata","doi":"10.26502/jbsb.5107039","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue culture environment liberate cells from ordinary laws of multi-cellular organisms. This liberation enables cells several behaviors, such as growth, dedifferentiation, acquisition of pluripotency, immortalization and reprogramming. Each phenomenon is relating to each other and hardly to determine. Recently, dedifferentiation of animal cell was quantified as increasing liberality which is information entropy of transcriptome. The increasing liberality induced by tissue culture may reappear in plant cells too. Here we corroborated it. Measuring liberality during reprogramming of plant cells suggested that reprogramming is a combined phenomenon of dedifferentiation and re-differentiation.</p>","PeriodicalId":73617,"journal":{"name":"Journal of bioinformatics and systems biology : Open access","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668052/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioinformatics and systems biology : Open access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26502/jbsb.5107039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue culture environment liberate cells from ordinary laws of multi-cellular organisms. This liberation enables cells several behaviors, such as growth, dedifferentiation, acquisition of pluripotency, immortalization and reprogramming. Each phenomenon is relating to each other and hardly to determine. Recently, dedifferentiation of animal cell was quantified as increasing liberality which is information entropy of transcriptome. The increasing liberality induced by tissue culture may reappear in plant cells too. Here we corroborated it. Measuring liberality during reprogramming of plant cells suggested that reprogramming is a combined phenomenon of dedifferentiation and re-differentiation.

Abstract Image

Abstract Image

在动物原代培养中观察到的转录组去分化对植物重编程至关重要。
组织培养环境将细胞从多细胞生物的一般规律中解放出来。这种释放使细胞能够进行多种行为,如生长、去分化、获得多能性、永生化和重编程。每种现象都是相互联系的,很难确定。近年来,动物细胞的去分化被量化为自由度的增加,即转录组的信息熵。组织培养诱导的自由度增加也可能在植物细胞中重现。这里我们证实了这一点。测量植物细胞重编程过程中的自由度表明,重编程是一个去分化和再分化的综合现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信