{"title":"Cerebrovascular modelling for the management of aneurysm embolization using an intrasaccular flow diverter made by 3D printing.","authors":"Oktay Algin, Ayse Keles, Cagdas Oto","doi":"10.5114/pjr.2022.120520","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Using 3-dimensional (3D) printers, the creation of patient-specific models is possible before and after a therapeutic intervention. There are many articles about replicas for training and simulation of aneurysm clipping. However, no paper has focused on 3D replicas obtained from 3-tesla 3D time of flight (3D-TOF) MR angiography for intrasaccular flow diverter (WEB device) embolization of the cerebral aneurysms. In this paper, we aimed to investigate the feasibility of 3D printing models obtained from 3-tesla 3D-TOF data in the management and training of WEB-assisted embolization procedures.</p><p><strong>Case presentation: </strong>We presented a longitudinal case report with several 3D-TOF MRA prints over time. Three-tesla 3D-TOF data were converted into STL and G-code files using an open-source (3D-Slicer) program. We built patient-specific realistic 3D models of a patient with a middle cerebral artery trifurcation aneurysm, which were able to demonstrate the entire WEB device treatment procedure in the pre-intervention and post-intervention periods. The aneurysmatic segment was well displayed on the STL files and the 3D replicas. They allowed visualization of the aneurysmatic segment and changes within a 6-year follow-up period. We successfully showed the possibility of fast, cheap, and easy production of replicas for demonstration of the aneurysm, the parent vessels, and post-intervention changes in a simple way using an affordable 3D printer.</p><p><strong>Conclusions: </strong>3D printing is useful for training the endovascular team and the patients, understanding the aneurysm/parent vessels, and choosing the optimal embolization technique/device. 3D printing will potentially lead to greater interventionalist confidence, decreased radiation dose, and improvements in patient safety.</p>","PeriodicalId":47128,"journal":{"name":"Polish Journal of Radiology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/09/93/PJR-87-48035.PMC9673973.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5114/pjr.2022.120520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 2
Abstract
Purpose: Using 3-dimensional (3D) printers, the creation of patient-specific models is possible before and after a therapeutic intervention. There are many articles about replicas for training and simulation of aneurysm clipping. However, no paper has focused on 3D replicas obtained from 3-tesla 3D time of flight (3D-TOF) MR angiography for intrasaccular flow diverter (WEB device) embolization of the cerebral aneurysms. In this paper, we aimed to investigate the feasibility of 3D printing models obtained from 3-tesla 3D-TOF data in the management and training of WEB-assisted embolization procedures.
Case presentation: We presented a longitudinal case report with several 3D-TOF MRA prints over time. Three-tesla 3D-TOF data were converted into STL and G-code files using an open-source (3D-Slicer) program. We built patient-specific realistic 3D models of a patient with a middle cerebral artery trifurcation aneurysm, which were able to demonstrate the entire WEB device treatment procedure in the pre-intervention and post-intervention periods. The aneurysmatic segment was well displayed on the STL files and the 3D replicas. They allowed visualization of the aneurysmatic segment and changes within a 6-year follow-up period. We successfully showed the possibility of fast, cheap, and easy production of replicas for demonstration of the aneurysm, the parent vessels, and post-intervention changes in a simple way using an affordable 3D printer.
Conclusions: 3D printing is useful for training the endovascular team and the patients, understanding the aneurysm/parent vessels, and choosing the optimal embolization technique/device. 3D printing will potentially lead to greater interventionalist confidence, decreased radiation dose, and improvements in patient safety.