Illuminating the molecular mechanisms underlying shoot apical meristem homeostasis in plants.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Akie Shimotohno
{"title":"Illuminating the molecular mechanisms underlying shoot apical meristem homeostasis in plants.","authors":"Akie Shimotohno","doi":"10.5511/plantbiotechnology.22.0213a","DOIUrl":null,"url":null,"abstract":"<p><p>Unlike animals, terrestrial plants are sessile and able to give rise to new organs throughout their lifetime. In the most extreme cases, they can survive for over a thousand years. With such protracted life cycles, plants have evolved sophisticated strategies to adapt to variable environments by coordinating their morphology as well as their growth, and have consequently acquired a high degree of developmental plasticity, which is supported by small groups of long-lived stem cells found in proliferative centers called meristems. Shoot apical meristems (SAMs) contain multipotent stem cells and provide a microenvironment that ensures both a self-renewable reservoir, to produce primordia and sustain growth, and a differentiating population that develops into all of the above-ground organs of land plants. The homeodomain transcription factor <i>WUSCHEL</i> (<i>WUS</i>) is expressed in the organizing center and acts as a master regulator to govern shoot stem cell homeostasis. In this review, I highlight recent advances in our understanding of the molecular mechanisms and signaling networks that underlie SAM maintenance, and discuss how plants utilize WUS to integrate intrinsic and extrinsic cues.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200092/pdf/plantbiotechnology-39-1-22.0213a.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.22.0213a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Unlike animals, terrestrial plants are sessile and able to give rise to new organs throughout their lifetime. In the most extreme cases, they can survive for over a thousand years. With such protracted life cycles, plants have evolved sophisticated strategies to adapt to variable environments by coordinating their morphology as well as their growth, and have consequently acquired a high degree of developmental plasticity, which is supported by small groups of long-lived stem cells found in proliferative centers called meristems. Shoot apical meristems (SAMs) contain multipotent stem cells and provide a microenvironment that ensures both a self-renewable reservoir, to produce primordia and sustain growth, and a differentiating population that develops into all of the above-ground organs of land plants. The homeodomain transcription factor WUSCHEL (WUS) is expressed in the organizing center and acts as a master regulator to govern shoot stem cell homeostasis. In this review, I highlight recent advances in our understanding of the molecular mechanisms and signaling networks that underlie SAM maintenance, and discuss how plants utilize WUS to integrate intrinsic and extrinsic cues.

阐明植物茎尖分生系统动态平衡的分子机制。
与动物不同,陆生植物是无根的,在它们的一生中都能产生新的器官。在最极端的情况下,它们可以存活一千多年。在如此漫长的生命周期中,植物进化出了复杂的策略,通过协调它们的形态和生长来适应多变的环境,并因此获得了高度的发育可塑性,这是由在增殖中心被称为分生组织的小群长寿干细胞支持的。茎尖分生组织(Shoot apical meristems, sam)含有多能干细胞,并提供了一个微环境,既保证了一个自我再生的水库,产生原基并维持生长,又保证了一个分化群体发育成陆地植物的所有地上器官。同源域转录因子WUSCHEL (WUS)在组织中心表达,是调控茎干内稳态的主调控因子。在这篇综述中,我重点介绍了我们对SAM维持的分子机制和信号网络的理解的最新进展,并讨论了植物如何利用WUS整合内在和外在的线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信