Explainable Artificial Intelligence in the Early Diagnosis of Gastrointestinal Disease.

Kwang-Sig Lee, Eun Sun Kim
{"title":"Explainable Artificial Intelligence in the Early Diagnosis of Gastrointestinal Disease.","authors":"Kwang-Sig Lee,&nbsp;Eun Sun Kim","doi":"10.3390/diagnostics12112740","DOIUrl":null,"url":null,"abstract":"<p><p>This study reviews the recent progress of explainable artificial intelligence for the early diagnosis of gastrointestinal disease (GID). The source of data was eight original studies in PubMed. The search terms were \"gastrointestinal\" (title) together with \"random forest\" or \"explainable artificial intelligence\" (abstract). The eligibility criteria were the dependent variable of GID or a strongly associated disease, the intervention(s) of artificial intelligence, the outcome(s) of accuracy and/or the area under the receiver operating characteristic curve (AUC), the outcome(s) of variable importance and/or the Shapley additive explanations (SHAP), a publication year of 2020 or later, and the publication language of English. The ranges of performance measures were reported to be 0.70-0.98 for accuracy, 0.04-0.25 for sensitivity, and 0.54-0.94 for the AUC. The following factors were discovered to be top-10 predictors of gastrointestinal bleeding in the intensive care unit: mean arterial pressure (max), bicarbonate (min), creatinine (max), PMN, heart rate (mean), Glasgow Coma Scale, age, respiratory rate (mean), prothrombin time (max) and aminotransferase aspartate (max). In a similar vein, the following variables were found to be top-10 predictors for the intake of almond, avocado, broccoli, walnut, whole-grain barley, and/or whole-grain oat: <i>Roseburia</i> undefined, <i>Lachnospira</i> spp., <i>Oscillibacter</i> undefined, <i>Subdoligranulum</i> spp., <i>Streptococcus salivarius</i> subsp. <i>thermophiles</i>, <i>Parabacteroides distasonis</i>, <i>Roseburia</i> spp., <i>Anaerostipes</i> spp., Lachnospiraceae <i>ND3007</i> group undefined, and <i>Ruminiclostridium</i> spp. Explainable artificial intelligence provides an effective, non-invasive decision support system for the early diagnosis of GID.</p>","PeriodicalId":520604,"journal":{"name":"Diagnostics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689865/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics (Basel, Switzerland)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics12112740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study reviews the recent progress of explainable artificial intelligence for the early diagnosis of gastrointestinal disease (GID). The source of data was eight original studies in PubMed. The search terms were "gastrointestinal" (title) together with "random forest" or "explainable artificial intelligence" (abstract). The eligibility criteria were the dependent variable of GID or a strongly associated disease, the intervention(s) of artificial intelligence, the outcome(s) of accuracy and/or the area under the receiver operating characteristic curve (AUC), the outcome(s) of variable importance and/or the Shapley additive explanations (SHAP), a publication year of 2020 or later, and the publication language of English. The ranges of performance measures were reported to be 0.70-0.98 for accuracy, 0.04-0.25 for sensitivity, and 0.54-0.94 for the AUC. The following factors were discovered to be top-10 predictors of gastrointestinal bleeding in the intensive care unit: mean arterial pressure (max), bicarbonate (min), creatinine (max), PMN, heart rate (mean), Glasgow Coma Scale, age, respiratory rate (mean), prothrombin time (max) and aminotransferase aspartate (max). In a similar vein, the following variables were found to be top-10 predictors for the intake of almond, avocado, broccoli, walnut, whole-grain barley, and/or whole-grain oat: Roseburia undefined, Lachnospira spp., Oscillibacter undefined, Subdoligranulum spp., Streptococcus salivarius subsp. thermophiles, Parabacteroides distasonis, Roseburia spp., Anaerostipes spp., Lachnospiraceae ND3007 group undefined, and Ruminiclostridium spp. Explainable artificial intelligence provides an effective, non-invasive decision support system for the early diagnosis of GID.

Abstract Image

Abstract Image

可解释的人工智能在胃肠道疾病早期诊断中的应用。
本文综述了可解释人工智能在胃肠疾病(GID)早期诊断中的最新进展。数据来源是PubMed上的八项原始研究。搜索词是“胃肠道”(标题)和“随机森林”或“可解释的人工智能”(摘要)。入选标准为:GID或强相关疾病因变量、人工智能干预、准确性和/或受试者工作特征曲线下面积(AUC)的结果、变量重要性和/或Shapley加性解释(SHAP)的结果、出版年份为2020年或以后、出版语言为英语。据报道,性能测量的范围为0.70-0.98的准确性,0.04-0.25的灵敏度和0.54-0.94的AUC。发现以下因素是重症监护病房胃肠道出血的前10个预测因素:平均动脉压(max)、碳酸氢盐(min)、肌酐(max)、PMN、心率(平均值)、格拉斯哥昏迷量表、年龄、呼吸频率(平均值)、凝血酶原时间(max)和天冬氨酸转氨酶(max)。类似地,以下变量被发现是杏仁、鳄梨、西兰花、核桃、全麦大麦和/或全麦燕麦摄入量的十大预测因素:未定义的玫瑰菌、未定义的毛螺旋体、未定义的Oscillibacter、未定义的doligranulum、唾液链球菌亚种。可解释的人工智能为GID的早期诊断提供了一个有效的、无创的决策支持系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信