{"title":"Fast-dissolving oral films containing dextromethorphan/phenylephrine for sinusitis treatment: formulation, characterization and optimization.","authors":"Mozhgan Moonesan, Fariba Ganji, Arezoo Soroushnia, Fatemeh Bagheri","doi":"10.1007/s40204-022-00191-w","DOIUrl":null,"url":null,"abstract":"<p><p>This work uses optimization study to formulate a patient-friendly antitussive fast-dissolving oral film based on phenylephrine hydrochloride (Phen) and dextromethorphan hydrobromide (Dex). The designed films were based on hydroxypropylmethyl cellulose (HPMC) with two grades (E5 and E50) as a film-forming polymer by the solvent-casting method. Polyethylene glycol with two molar masses (400 and 1000) was used as a plasticizer, while aspartame was used as a sweetener and microcrystalline cellulose intended to act as a disintegrant. To find an optimum formulation, a response surface methodology and a central composite design were employed. The percentage of HPMC E50, and PEG, as a plasticizer, were considered to be the design factors. Film thickness, surface pH, disintegration time, dissolution percent, tensile strength, elongation percent and folding endurance were considered to be the responses. A film with 11.46% E50, 88.54% E5, 25% of two drugs (8.4% of Phen and 16.6% of Dex) and 18.54% plasticizer is designed and prepared as the optimum formulation for Phen/Dex fast-dissolving oral films, with 95% confidence levels.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374860/pdf/40204_2022_Article_191.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-022-00191-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
This work uses optimization study to formulate a patient-friendly antitussive fast-dissolving oral film based on phenylephrine hydrochloride (Phen) and dextromethorphan hydrobromide (Dex). The designed films were based on hydroxypropylmethyl cellulose (HPMC) with two grades (E5 and E50) as a film-forming polymer by the solvent-casting method. Polyethylene glycol with two molar masses (400 and 1000) was used as a plasticizer, while aspartame was used as a sweetener and microcrystalline cellulose intended to act as a disintegrant. To find an optimum formulation, a response surface methodology and a central composite design were employed. The percentage of HPMC E50, and PEG, as a plasticizer, were considered to be the design factors. Film thickness, surface pH, disintegration time, dissolution percent, tensile strength, elongation percent and folding endurance were considered to be the responses. A film with 11.46% E50, 88.54% E5, 25% of two drugs (8.4% of Phen and 16.6% of Dex) and 18.54% plasticizer is designed and prepared as the optimum formulation for Phen/Dex fast-dissolving oral films, with 95% confidence levels.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.