Letizia Crocetti, Giuseppe Floresta, Chiara Zagni, Divya Merugu, Francesca Mazzacuva, Renan Rodrigues de Oliveira Silva, Claudia Vergelli, Maria Paola Giovannoni, Agostino Cilibrizzi
{"title":"Ligand Growing Experiments Suggested 4-amino and 4-ureido pyridazin-3(2<i>H</i>)-one as Novel Scaffold for FABP4 Inhibition.","authors":"Letizia Crocetti, Giuseppe Floresta, Chiara Zagni, Divya Merugu, Francesca Mazzacuva, Renan Rodrigues de Oliveira Silva, Claudia Vergelli, Maria Paola Giovannoni, Agostino Cilibrizzi","doi":"10.3390/ph15111335","DOIUrl":null,"url":null,"abstract":"<p><p>Fatty acid binding protein (FABP4) inhibitors are of synthetic and therapeutic interest and ongoing clinical studies indicate that they may be a promise for the treatment of cancer, as well as other diseases. As part of a broader research effort to develop more effective FABP4 inhibitors, we sought to identify new structures through a two-step computing assisted molecular design based on the established scaffold of a co-crystallized ligand. Novel and potent FABP4 inhibitors have been developed using this approach and herein we report the synthesis, biological evaluation and molecular docking of the 4-amino and 4-ureido pyridazinone-based series.</p>","PeriodicalId":520747,"journal":{"name":"Pharmaceuticals (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697826/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals (Basel, Switzerland)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph15111335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Fatty acid binding protein (FABP4) inhibitors are of synthetic and therapeutic interest and ongoing clinical studies indicate that they may be a promise for the treatment of cancer, as well as other diseases. As part of a broader research effort to develop more effective FABP4 inhibitors, we sought to identify new structures through a two-step computing assisted molecular design based on the established scaffold of a co-crystallized ligand. Novel and potent FABP4 inhibitors have been developed using this approach and herein we report the synthesis, biological evaluation and molecular docking of the 4-amino and 4-ureido pyridazinone-based series.