Stephanie Wunderlich, Alexandra Haase, Sylvia Merkert, Kirsten Jahn, Maximillian Deest, Helge Frieling, Silke Glage, Wilhelm Korte, Andreas Martens, Andreas Kirschning, Andre Zeug, Evgeni Ponimaskin, Gudrun Göhring, Mania Ackermann, Nico Lachmann, Thomas Moritz, Robert Zweigerdt, Ulrich Martin
{"title":"Targeted biallelic integration of an inducible Caspase 9 suicide gene in iPSCs for safer therapies.","authors":"Stephanie Wunderlich, Alexandra Haase, Sylvia Merkert, Kirsten Jahn, Maximillian Deest, Helge Frieling, Silke Glage, Wilhelm Korte, Andreas Martens, Andreas Kirschning, Andre Zeug, Evgeni Ponimaskin, Gudrun Göhring, Mania Ackermann, Nico Lachmann, Thomas Moritz, Robert Zweigerdt, Ulrich Martin","doi":"10.1016/j.omtm.2022.05.011","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-inducible suicide systems may help to minimize risks of human induced pluripotent stem cell (hiPSC) therapies. Recent research challenged the usefulness of such systems since rare drug-resistant subclones were observed. We have introduced a drug-inducible Caspase 9 suicide system (iCASP9) into the AAVS1 safe-harbor locus of hiPSCs. In these cells, apoptosis could be efficiently induced <i>in vitro</i>. After transplantation into mice, drug treatment generally led to rapid elimination of teratomas, but single animals subsequently formed tumor tissue from monoallelic iCASP9 hiPSCs. Very rare drug-resistant subclones of monoallelic iCASP9 hiPSCs appeared <i>in vitro</i> with frequencies of ∼ 3 × 10<sup>-8</sup>. Besides transgene elimination, presumably via loss of heterozygosity (LoH), silencing via aberrant promoter methylation was identified as a major underlying mechanism. In contrast to monoallelic iCASP9 hiPSCs, no escapees from biallelic iCASP9 cells were observed after treatment of up to 0.8 billion hiPSCs. The highly increased safety level provided by biallelic integration of the iCASP9 system may substantially contribute to the safety level of iPSC-based therapies.</p>","PeriodicalId":517056,"journal":{"name":"Molecular Therapy. Methods & Clinical Development","volume":" ","pages":"84-94"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/87/a3/main.PMC9234009.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2022.05.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/8 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Drug-inducible suicide systems may help to minimize risks of human induced pluripotent stem cell (hiPSC) therapies. Recent research challenged the usefulness of such systems since rare drug-resistant subclones were observed. We have introduced a drug-inducible Caspase 9 suicide system (iCASP9) into the AAVS1 safe-harbor locus of hiPSCs. In these cells, apoptosis could be efficiently induced in vitro. After transplantation into mice, drug treatment generally led to rapid elimination of teratomas, but single animals subsequently formed tumor tissue from monoallelic iCASP9 hiPSCs. Very rare drug-resistant subclones of monoallelic iCASP9 hiPSCs appeared in vitro with frequencies of ∼ 3 × 10-8. Besides transgene elimination, presumably via loss of heterozygosity (LoH), silencing via aberrant promoter methylation was identified as a major underlying mechanism. In contrast to monoallelic iCASP9 hiPSCs, no escapees from biallelic iCASP9 cells were observed after treatment of up to 0.8 billion hiPSCs. The highly increased safety level provided by biallelic integration of the iCASP9 system may substantially contribute to the safety level of iPSC-based therapies.