{"title":"Label-free target protein characterization for small molecule drugs: recent advances in methods and applications","authors":"Fei Feng , Weiyue Zhang , Yifeng Chai , Dandan Guo , Xiaofei Chen","doi":"10.1016/j.jpba.2022.115107","DOIUrl":null,"url":null,"abstract":"<div><p>Target protein identification is the key to identification of the mechanisms, side effects, and evaluating druglikeness of small-molecule drugs. The commonly used “labeled” target-characterization methods, including activity‐based proteome<span><span><span> profiling (ABPP), require the synthesis of a derivatized probe, which are time-consuming and may affect the active drug conformation. Label-free target identification methods do not involve any chemical modification of small-molecules drugs and have received increasing attention in recent years. We reviewed the basic principles, workflow, applications, advantages, and disadvantages of the promising label‐free target identification methods, including cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), pulse </span>proteolysis<span> (PP), stability of proteins from rates of oxidation (SPROX), drug affinity responsive target stability (DARTS), limited proteolysis‐coupled mass spectrometry (LiP-MS) and solvent-induced protein precipitation (SIP). We also reviewed the prospective applications of these label-free methods for efficient target identification. The approaches based on </span></span>peptide mapping using high-resolution mass spectrometry (MS) may provide more information regarding comprehensive target proteins and binding sites, which may be useful for target identification in multi-target or complex drug systems.</span></p></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"223 ","pages":"Article 115107"},"PeriodicalIF":3.1000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708522005283","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Target protein identification is the key to identification of the mechanisms, side effects, and evaluating druglikeness of small-molecule drugs. The commonly used “labeled” target-characterization methods, including activity‐based proteome profiling (ABPP), require the synthesis of a derivatized probe, which are time-consuming and may affect the active drug conformation. Label-free target identification methods do not involve any chemical modification of small-molecules drugs and have received increasing attention in recent years. We reviewed the basic principles, workflow, applications, advantages, and disadvantages of the promising label‐free target identification methods, including cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), pulse proteolysis (PP), stability of proteins from rates of oxidation (SPROX), drug affinity responsive target stability (DARTS), limited proteolysis‐coupled mass spectrometry (LiP-MS) and solvent-induced protein precipitation (SIP). We also reviewed the prospective applications of these label-free methods for efficient target identification. The approaches based on peptide mapping using high-resolution mass spectrometry (MS) may provide more information regarding comprehensive target proteins and binding sites, which may be useful for target identification in multi-target or complex drug systems.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.