Miguel de Carvalho, Alina Kumukova, Gonçalo Dos Reis
{"title":"Regression-type analysis for multivariate extreme values.","authors":"Miguel de Carvalho, Alina Kumukova, Gonçalo Dos Reis","doi":"10.1007/s10687-022-00446-6","DOIUrl":null,"url":null,"abstract":"<p><p>This paper devises a regression-type model for the situation where both the response and covariates are extreme. The proposed approach is designed for the setting where the response and covariates are modeled as multivariate extreme values, and thus contrarily to standard regression methods it takes into account the key fact that the limiting distribution of suitably standardized componentwise maxima is an extreme value copula. An important target in the proposed framework is the regression manifold, which consists of a family of regression lines obeying the latter asymptotic result. To learn about the proposed model from data, we employ a Bernstein polynomial prior on the space of angular densities which leads to an induced prior on the space of regression manifolds. Numerical studies suggest a good performance of the proposed methods, and a finance real-data illustration reveals interesting aspects on the conditional risk of extreme losses in two leading international stock markets.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10687-022-00446-6.</p>","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"25 4","pages":"595-622"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589765/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10687-022-00446-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
This paper devises a regression-type model for the situation where both the response and covariates are extreme. The proposed approach is designed for the setting where the response and covariates are modeled as multivariate extreme values, and thus contrarily to standard regression methods it takes into account the key fact that the limiting distribution of suitably standardized componentwise maxima is an extreme value copula. An important target in the proposed framework is the regression manifold, which consists of a family of regression lines obeying the latter asymptotic result. To learn about the proposed model from data, we employ a Bernstein polynomial prior on the space of angular densities which leads to an induced prior on the space of regression manifolds. Numerical studies suggest a good performance of the proposed methods, and a finance real-data illustration reveals interesting aspects on the conditional risk of extreme losses in two leading international stock markets.
Supplementary information: The online version contains supplementary material available at 10.1007/s10687-022-00446-6.
ExtremesMATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.20
自引率
7.70%
发文量
15
审稿时长
>12 weeks
期刊介绍:
Extremes publishes original research on all aspects of statistical extreme value theory and its applications in science, engineering, economics and other fields. Authoritative and timely reviews of theoretical advances and of extreme value methods and problems in important applied areas, including detailed case studies, are welcome and will be a regular feature. All papers are refereed. Publication will be swift: in particular electronic submission and correspondence is encouraged.
Statistical extreme value methods encompass a very wide range of problems: Extreme waves, rainfall, and floods are of basic importance in oceanography and hydrology, as are high windspeeds and extreme temperatures in meteorology and catastrophic claims in insurance. The waveforms and extremes of random loads determine lifelengths in structural safety, corrosion and metal fatigue.