D Mohan Kishore, S Bindu, Nandi Krishnamurthy Manjunath
{"title":"Estimation of Yoga Postures Using Machine Learning Techniques.","authors":"D Mohan Kishore, S Bindu, Nandi Krishnamurthy Manjunath","doi":"10.4103/ijoy.ijoy_97_22","DOIUrl":null,"url":null,"abstract":"<p><p>Yoga is a traditional Indian way of keeping the mind and body fit, through physical postures (asanas), voluntarily regulated breathing <i>(pranayama),</i> meditation, and relaxation techniques. The recent pandemic has seen a huge surge in numbers of yoga practitioners, many practicing without proper guidance. This study was proposed to ease the work of such practitioners by implementing deep learning-based methods, which can estimate the correct pose performed by a practitioner. The study implemented this approach using four different deep learning architectures: EpipolarPose, OpenPose, PoseNet, and MediaPipe. These architectures were separately trained using the images obtained from S-VYASA Deemed to be University. This database had images for five commonly practiced yoga postures: tree pose, triangle pose, half-moon pose, mountain pose, and warrior pose. The use of this authentic database for training paved the way for the deployment of this model in real-time applications. The study also compared the estimation accuracy of all architectures and concluded that the MediaPipe architecture provides the best estimation accuracy.</p>","PeriodicalId":14436,"journal":{"name":"International Journal of Yoga","volume":"15 2","pages":"137-143"},"PeriodicalIF":1.1000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/12/56/IJY-15-137.PMC9623892.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Yoga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/ijoy.ijoy_97_22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 7
Abstract
Yoga is a traditional Indian way of keeping the mind and body fit, through physical postures (asanas), voluntarily regulated breathing (pranayama), meditation, and relaxation techniques. The recent pandemic has seen a huge surge in numbers of yoga practitioners, many practicing without proper guidance. This study was proposed to ease the work of such practitioners by implementing deep learning-based methods, which can estimate the correct pose performed by a practitioner. The study implemented this approach using four different deep learning architectures: EpipolarPose, OpenPose, PoseNet, and MediaPipe. These architectures were separately trained using the images obtained from S-VYASA Deemed to be University. This database had images for five commonly practiced yoga postures: tree pose, triangle pose, half-moon pose, mountain pose, and warrior pose. The use of this authentic database for training paved the way for the deployment of this model in real-time applications. The study also compared the estimation accuracy of all architectures and concluded that the MediaPipe architecture provides the best estimation accuracy.