{"title":"Machine learning for enumeration of cell colony forming units.","authors":"Louis Zhang","doi":"10.1186/s42492-022-00122-3","DOIUrl":null,"url":null,"abstract":"<p><p>As one of the most widely used assays in biological research, an enumeration of the bacterial cell colonies is an important but time-consuming and labor-intensive process. To speed up the colony counting, a machine learning method is presented for counting the colony forming units (CFUs), which is referred to as CFUCounter. This cell-counting program processes digital images and segments bacterial colonies. The algorithm combines unsupervised machine learning, iterative adaptive thresholding, and local-minima-based watershed segmentation to enable an accurate and robust cell counting. Compared to a manual counting method, CFUCounter supports color-based CFU classification, allows plates containing heterologous colonies to be counted individually, and demonstrates overall performance (slope 0.996, SD 0.013, 95%CI: 0.97-1.02, p value < 1e-11, r = 0.999) indistinguishable from the gold standard of point-and-click counting. This CFUCounter application is open-source and easy to use as a unique addition to the arsenal of colony-counting tools.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":" ","pages":"26"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637067/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-022-00122-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 2
Abstract
As one of the most widely used assays in biological research, an enumeration of the bacterial cell colonies is an important but time-consuming and labor-intensive process. To speed up the colony counting, a machine learning method is presented for counting the colony forming units (CFUs), which is referred to as CFUCounter. This cell-counting program processes digital images and segments bacterial colonies. The algorithm combines unsupervised machine learning, iterative adaptive thresholding, and local-minima-based watershed segmentation to enable an accurate and robust cell counting. Compared to a manual counting method, CFUCounter supports color-based CFU classification, allows plates containing heterologous colonies to be counted individually, and demonstrates overall performance (slope 0.996, SD 0.013, 95%CI: 0.97-1.02, p value < 1e-11, r = 0.999) indistinguishable from the gold standard of point-and-click counting. This CFUCounter application is open-source and easy to use as a unique addition to the arsenal of colony-counting tools.