Enhancing glass ionomer cement features by using the calcium phosphate nanocomposite.

Q2 Medicine
Ana Caroline Alves Duarte, Rodrigo David Fernandes Cunha Pereira, Sandhra Maria de Carvalho, Adriana Gonçalves da Silva, Cíntia Tereza Pimenta de Araújo, Rodrigo Galo, Vitor César Dumont
{"title":"Enhancing glass ionomer cement features by using the calcium phosphate nanocomposite.","authors":"Ana Caroline Alves Duarte,&nbsp;Rodrigo David Fernandes Cunha Pereira,&nbsp;Sandhra Maria de Carvalho,&nbsp;Adriana Gonçalves da Silva,&nbsp;Cíntia Tereza Pimenta de Araújo,&nbsp;Rodrigo Galo,&nbsp;Vitor César Dumont","doi":"10.1590/0103-6440202204887","DOIUrl":null,"url":null,"abstract":"<p><p>This study showed the synthesis of Glass ionomer cements (GIC) modified with calcium phosphate nanoparticles (nCaP). The nCaP/GIC were submitted to mechanical compression and diametral tensile tests. The biocomposite were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). Cytotoxicity and cell viability tests were performed on the human bone marrow mesenchymal stem cells using a 3-(4,5-dimethylthiazol-2yl)2,5-diphenyl- tetrazolium-bromide assay and LIVE/DEAD assays. Statistically significant differences were observed for mechanical properties (Kruskal-Wallis, p<0.001), nCaP/GIC showed higher resistance to compression and diametral traction. The SEM analyses revealed a uniform distribution nCaP in the ionomer matrix. The EDX and XRD results indicated that hydroxyapatite and calcium β-triphosphate phases. The FTIR spectra revealed the asymmetric band of ν3PO43- between 1100-1030cm-1 and the vibration band associated with ν1PO43- in 963cm-1 associated with nCaP. The nCaP/GIC presented response to adequate cell viability and non-cytotoxic behavior. Therefore, the new nCaP/GIC composite showed great mechanical properties, non-cytotoxic behavior, and adequate response to cell viability with promising dental applications.</p>","PeriodicalId":9211,"journal":{"name":"Brazilian dental journal","volume":" ","pages":"99-108"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645200/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian dental journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0103-6440202204887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

Abstract

This study showed the synthesis of Glass ionomer cements (GIC) modified with calcium phosphate nanoparticles (nCaP). The nCaP/GIC were submitted to mechanical compression and diametral tensile tests. The biocomposite were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). Cytotoxicity and cell viability tests were performed on the human bone marrow mesenchymal stem cells using a 3-(4,5-dimethylthiazol-2yl)2,5-diphenyl- tetrazolium-bromide assay and LIVE/DEAD assays. Statistically significant differences were observed for mechanical properties (Kruskal-Wallis, p<0.001), nCaP/GIC showed higher resistance to compression and diametral traction. The SEM analyses revealed a uniform distribution nCaP in the ionomer matrix. The EDX and XRD results indicated that hydroxyapatite and calcium β-triphosphate phases. The FTIR spectra revealed the asymmetric band of ν3PO43- between 1100-1030cm-1 and the vibration band associated with ν1PO43- in 963cm-1 associated with nCaP. The nCaP/GIC presented response to adequate cell viability and non-cytotoxic behavior. Therefore, the new nCaP/GIC composite showed great mechanical properties, non-cytotoxic behavior, and adequate response to cell viability with promising dental applications.

Abstract Image

Abstract Image

Abstract Image

磷酸钙纳米复合材料增强玻璃离子水泥性能。
本文研究了磷酸钙纳米颗粒修饰玻璃离子聚合物水泥(GIC)的合成。nCaP/GIC进行了机械压缩和直径拉伸试验。采用扫描电镜(SEM)、能量色散x射线能谱(EDX)、x射线衍射(XRD)和傅里叶变换红外光谱(FTIR)对复合材料进行了表征。采用3-(4,5-二甲基噻唑-2基)2,5-二苯基-四唑溴测定法和LIVE/DEAD测定法对人骨髓间充质干细胞进行细胞毒性和细胞活力试验。在力学性能上观察到统计学上的显著差异(Kruskal-Wallis, p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brazilian dental journal
Brazilian dental journal Dentistry-Dentistry (all)
CiteScore
2.20
自引率
0.00%
发文量
69
审稿时长
12 weeks
期刊介绍: Brazilian Dental Journal, publishes Full-Length Papers, Short Communications and Case Reports, dealing with dentistry or related disciplines and edited six times a year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信