Efficient emotion recognition using hyperdimensional computing with combinatorial channel encoding and cellular automata.

Q1 Computer Science
Alisha Menon, Anirudh Natarajan, Reva Agashe, Daniel Sun, Melvin Aristio, Harrison Liew, Yakun Sophia Shao, Jan M Rabaey
{"title":"Efficient emotion recognition using hyperdimensional computing with combinatorial channel encoding and cellular automata.","authors":"Alisha Menon, Anirudh Natarajan, Reva Agashe, Daniel Sun, Melvin Aristio, Harrison Liew, Yakun Sophia Shao, Jan M Rabaey","doi":"10.1186/s40708-022-00162-8","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a hardware-optimized approach to emotion recognition based on the efficient brain-inspired hyperdimensional computing (HDC) paradigm is proposed. Emotion recognition provides valuable information for human-computer interactions; however, the large number of input channels (> 200) and modalities (> 3 ) involved in emotion recognition are significantly expensive from a memory perspective. To address this, methods for memory reduction and optimization are proposed, including a novel approach that takes advantage of the combinatorial nature of the encoding process, and an elementary cellular automaton. HDC with early sensor fusion is implemented alongside the proposed techniques achieving two-class multi-modal classification accuracies of > 76% for valence and > 73% for arousal on the multi-modal AMIGOS and DEAP data sets, almost always better than state of the art. The required vector storage is seamlessly reduced by 98% and the frequency of vector requests by at least 1/5. The results demonstrate the potential of efficient hyperdimensional computing for low-power, multi-channeled emotion recognition tasks.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":" ","pages":"14"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237202/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-022-00162-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a hardware-optimized approach to emotion recognition based on the efficient brain-inspired hyperdimensional computing (HDC) paradigm is proposed. Emotion recognition provides valuable information for human-computer interactions; however, the large number of input channels (> 200) and modalities (> 3 ) involved in emotion recognition are significantly expensive from a memory perspective. To address this, methods for memory reduction and optimization are proposed, including a novel approach that takes advantage of the combinatorial nature of the encoding process, and an elementary cellular automaton. HDC with early sensor fusion is implemented alongside the proposed techniques achieving two-class multi-modal classification accuracies of > 76% for valence and > 73% for arousal on the multi-modal AMIGOS and DEAP data sets, almost always better than state of the art. The required vector storage is seamlessly reduced by 98% and the frequency of vector requests by at least 1/5. The results demonstrate the potential of efficient hyperdimensional computing for low-power, multi-channeled emotion recognition tasks.

Abstract Image

Abstract Image

Abstract Image

利用超维计算、组合信道编码和细胞自动机进行高效情感识别。
本文提出了一种基于高效脑启发超维计算(HDC)范式的硬件优化情感识别方法。情绪识别为人机交互提供了宝贵的信息;然而,从内存角度来看,情绪识别所涉及的大量输入通道(> 200 个)和模式(> 3 种)非常昂贵。为了解决这个问题,我们提出了减少内存和优化内存的方法,包括一种利用编码过程组合性质的新方法和一种基本蜂窝自动机。在实现早期传感器融合的 HDC 的同时,还采用了所提出的技术,在多模态 AMIGOS 和 DEAP 数据集上实现了两类多模态分类的准确率,其中情感分类的准确率大于 76%,唤醒分类的准确率大于 73%,几乎始终优于现有技术水平。所需的向量存储空间无缝减少了 98%,向量请求频率至少减少了 1/5。这些结果证明了高效超维计算在低功耗、多通道情绪识别任务中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信