Modeling the stochastic within-host dynamics SARS-CoV-2 infection with discrete delay.

IF 1.3 4区 生物学 Q3 BIOLOGY
Theory in Biosciences Pub Date : 2022-11-01 Epub Date: 2022-10-03 DOI:10.1007/s12064-022-00379-5
I M Elbaz, M A Sohaly, H El-Metwally
{"title":"Modeling the stochastic within-host dynamics SARS-CoV-2 infection with discrete delay.","authors":"I M Elbaz,&nbsp;M A Sohaly,&nbsp;H El-Metwally","doi":"10.1007/s12064-022-00379-5","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a new mathematical model that describes the dynamics of the within-host COVID-19 epidemic is formulated. We show the stochastic dynamics of Target-Latent-Infected-Virus free within the human body with discrete delay and noise. Positivity and uniqueness of the solutions are established. Our study shows the extinction and persistence of the disease inside the human body through the stability analysis of the disease-free equilibrium [Formula: see text] and the endemic equilibrium [Formula: see text], respectively. Moreover, we show the impact of delay tactics and noise on the extinction of the disease. The most interesting result is even if the deterministic system is inevitably pandemic at a specific point, extinction will become possible in the stochastic version of our model.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9527740/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory in Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12064-022-00379-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, a new mathematical model that describes the dynamics of the within-host COVID-19 epidemic is formulated. We show the stochastic dynamics of Target-Latent-Infected-Virus free within the human body with discrete delay and noise. Positivity and uniqueness of the solutions are established. Our study shows the extinction and persistence of the disease inside the human body through the stability analysis of the disease-free equilibrium [Formula: see text] and the endemic equilibrium [Formula: see text], respectively. Moreover, we show the impact of delay tactics and noise on the extinction of the disease. The most interesting result is even if the deterministic system is inevitably pandemic at a specific point, extinction will become possible in the stochastic version of our model.

Abstract Image

Abstract Image

Abstract Image

离散延迟随机宿主内动力学SARS-CoV-2感染建模。
本文建立了一个新的数学模型,描述了COVID-19在宿主内流行的动态。我们展示了具有离散延迟和噪声的无目标潜伏感染病毒在人体内的随机动力学。建立了解的正唯一性。我们的研究分别通过对无病平衡[公式:见文]和地方病平衡[公式:见文]的稳定性分析,表明疾病在人体内的灭绝和持续存在。此外,我们还展示了延迟策略和噪声对疾病灭绝的影响。最有趣的结果是,即使确定性系统在某个特定点不可避免地出现大流行,在我们模型的随机版本中,灭绝也是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory in Biosciences
Theory in Biosciences 生物-生物学
CiteScore
2.70
自引率
9.10%
发文量
21
审稿时长
3 months
期刊介绍: Theory in Biosciences focuses on new concepts in theoretical biology. It also includes analytical and modelling approaches as well as philosophical and historical issues. Central topics are: Artificial Life; Bioinformatics with a focus on novel methods, phenomena, and interpretations; Bioinspired Modeling; Complexity, Robustness, and Resilience; Embodied Cognition; Evolutionary Biology; Evo-Devo; Game Theoretic Modeling; Genetics; History of Biology; Language Evolution; Mathematical Biology; Origin of Life; Philosophy of Biology; Population Biology; Systems Biology; Theoretical Ecology; Theoretical Molecular Biology; Theoretical Neuroscience & Cognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信