Cellular Thermal Shift Assay for the Detection of Small Molecule-Target Interactions in Arabidopsis Cells.

Q4 Biochemistry, Genetics and Molecular Biology
Qing Lu, Eugenia Russinova
{"title":"Cellular Thermal Shift Assay for the Detection of Small Molecule-Target Interactions in Arabidopsis Cells.","authors":"Qing Lu,&nbsp;Eugenia Russinova","doi":"10.1007/978-1-0716-2624-5_3","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical genetics takes advantage of small molecule-protein interactions to explore various biological processes. Although an attractive alternative to classical genetics in plants, the identification of small-molecule targets remains a challenge and limits the broad use of the compounds. The cellular thermal shift assay (CETSA), based on the principle that binding of small molecules could affect the thermal stability of proteins, has been applied for target validation in plant cells. Combined with high-resolution mass spectrometry, CETSA can detect small-molecule targets by monitoring the changes in the protein thermal stability caused by the interactions with small molecules at the proteome level. Here we describe the small-molecule target validation as well as the target identification with mass spectrometry by means of CETSA.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-2624-5_3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical genetics takes advantage of small molecule-protein interactions to explore various biological processes. Although an attractive alternative to classical genetics in plants, the identification of small-molecule targets remains a challenge and limits the broad use of the compounds. The cellular thermal shift assay (CETSA), based on the principle that binding of small molecules could affect the thermal stability of proteins, has been applied for target validation in plant cells. Combined with high-resolution mass spectrometry, CETSA can detect small-molecule targets by monitoring the changes in the protein thermal stability caused by the interactions with small molecules at the proteome level. Here we describe the small-molecule target validation as well as the target identification with mass spectrometry by means of CETSA.

细胞热移法检测拟南芥细胞中小分子-靶标相互作用。
化学遗传学利用小分子-蛋白质相互作用来探索各种生物过程。尽管在植物中,小分子靶点的鉴定是一种有吸引力的替代方法,但仍然是一个挑战,并限制了化合物的广泛使用。基于小分子结合可影响蛋白质热稳定性的原理,细胞热移测定(CETSA)已被应用于植物细胞的靶标验证。结合高分辨率质谱法,CETSA可以在蛋白质组水平上通过监测与小分子相互作用引起的蛋白质热稳定性变化来检测小分子靶标。本文介绍了利用CETSA进行小分子靶标验证和质谱鉴定的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信