Superiority of quadratic over conventional neural networks for classification of gaussian mixture data.

4区 计算机科学 Q1 Arts and Humanities
Tianrui Qi, Ge Wang
{"title":"Superiority of quadratic over conventional neural networks for classification of gaussian mixture data.","authors":"Tianrui Qi,&nbsp;Ge Wang","doi":"10.1186/s42492-022-00118-z","DOIUrl":null,"url":null,"abstract":"<p><p>To enrich the diversity of artificial neurons, a type of quadratic neurons was proposed previously, where the inner product of inputs and weights is replaced by a quadratic operation. In this paper, we demonstrate the superiority of such quadratic neurons over conventional counterparts. For this purpose, we train such quadratic neural networks using an adapted backpropagation algorithm and perform a systematic comparison between quadratic and conventional neural networks for classificaiton of Gaussian mixture data, which is one of the most important machine learning tasks. Our results show that quadratic neural networks enjoy remarkably better efficacy and efficiency than conventional neural networks in this context, and potentially extendable to other relevant applications.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":" ","pages":"23"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515302/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-022-00118-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 2

Abstract

To enrich the diversity of artificial neurons, a type of quadratic neurons was proposed previously, where the inner product of inputs and weights is replaced by a quadratic operation. In this paper, we demonstrate the superiority of such quadratic neurons over conventional counterparts. For this purpose, we train such quadratic neural networks using an adapted backpropagation algorithm and perform a systematic comparison between quadratic and conventional neural networks for classificaiton of Gaussian mixture data, which is one of the most important machine learning tasks. Our results show that quadratic neural networks enjoy remarkably better efficacy and efficiency than conventional neural networks in this context, and potentially extendable to other relevant applications.

Abstract Image

Abstract Image

Abstract Image

二次型神经网络在高斯混合数据分类中的优越性。
为了丰富人工神经元的多样性,以前提出了一种二次型神经元,用二次运算代替输入和权重的内积。在本文中,我们证明了这种二次型神经元相对于传统同类的优越性。为此,我们使用自适应反向传播算法训练这种二次神经网络,并对高斯混合数据分类的二次神经网络和常规神经网络进行系统比较,这是最重要的机器学习任务之一。我们的研究结果表明,在这种情况下,二次神经网络比传统神经网络具有明显更好的功效和效率,并且具有扩展到其他相关应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Visual Computing for Industry, Biomedicine, and Art
Visual Computing for Industry, Biomedicine, and Art Arts and Humanities-Visual Arts and Performing Arts
CiteScore
5.60
自引率
0.00%
发文量
28
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信