CuO-TiO2-Chitosan-Berbamine Nanocomposites Induce Apoptosis through the Mitochondrial Pathway with the Expression of P53, BAX, and BCL-2 in the Human K562 Cancer Cell Line.

IF 4.7 3区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bioinorganic Chemistry and Applications Pub Date : 2022-09-17 eCollection Date: 2022-01-01 DOI:10.1155/2022/9602725
Abozer Y Elderdery, Badr Alzahrani, Siddiqa M A Hamza, Gomaa Mostafa-Hedeab, Pooi Ling Mok, Suresh Kumar Subbiah
{"title":"CuO-TiO<sub>2</sub>-Chitosan-Berbamine Nanocomposites Induce Apoptosis through the Mitochondrial Pathway with the Expression of P53, BAX, and BCL-2 in the Human K562 Cancer Cell Line.","authors":"Abozer Y Elderdery, Badr Alzahrani, Siddiqa M A Hamza, Gomaa Mostafa-Hedeab, Pooi Ling Mok, Suresh Kumar Subbiah","doi":"10.1155/2022/9602725","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, cells from human Chronic Myelogenous Leukemia (K562) were cultivated with CuO-TiO<sub>2</sub>-Chitosan-Berbamine nanocomposites. We examined nanocomposites using XRD, DLS, FESEM, TEM, PL, EDAX, and FTIR spectroscopy, as well as MTT for cytotoxicity, and AO/EtBr for apoptotic morphology assessment. The rate of apoptosis and cell cycle arrests was determined using flow cytometry. Flow cytometry was also employed to identify pro- and antiapoptotic proteins such as Bcl2, Bad, Bax, P53, and Cyt C. The FTIR spectrum revealed that the CuO-TiO<sub>2</sub>-Chitosan-Berbamine nanocomposites were electrostatically interlocked. The nanocomposites' XRD signals revealed a hexagonal shape. In the DLS spectrum, nanocomposites were found to have a hydrodynamic diameter. As a result of their cytotoxic action, nanocomposites displayed concentration-dependent cytotoxicity. The nanocomposites, like Doxorubicin, caused cell cycle phase arrest in K562 cells. After treatment with IC<sub>50</sub> concentrations of CuO-TiO<sub>2</sub>-Chitosan-Berbamine nanocomposites and Doxorubicin, a substantial percentage of cells were in G2/M stage arrest. Caspase-3, -7, -8, -9, Bax, Bad, Cyt C, and P53 expression were considerably enhanced in K562 cells, whereas Bcl2 expression was decreased, indicating that these cells may have therapeutic potential against human blood cancer/leukemia-derived disorders. As a result, the nanocomposites demonstrated outstanding anticancer potential against leukemic cells. CuO-TiO<sub>2</sub>-Chitosan-Berbamine, according to our findings.</p>","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9509271/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinorganic Chemistry and Applications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/9602725","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

In this study, cells from human Chronic Myelogenous Leukemia (K562) were cultivated with CuO-TiO2-Chitosan-Berbamine nanocomposites. We examined nanocomposites using XRD, DLS, FESEM, TEM, PL, EDAX, and FTIR spectroscopy, as well as MTT for cytotoxicity, and AO/EtBr for apoptotic morphology assessment. The rate of apoptosis and cell cycle arrests was determined using flow cytometry. Flow cytometry was also employed to identify pro- and antiapoptotic proteins such as Bcl2, Bad, Bax, P53, and Cyt C. The FTIR spectrum revealed that the CuO-TiO2-Chitosan-Berbamine nanocomposites were electrostatically interlocked. The nanocomposites' XRD signals revealed a hexagonal shape. In the DLS spectrum, nanocomposites were found to have a hydrodynamic diameter. As a result of their cytotoxic action, nanocomposites displayed concentration-dependent cytotoxicity. The nanocomposites, like Doxorubicin, caused cell cycle phase arrest in K562 cells. After treatment with IC50 concentrations of CuO-TiO2-Chitosan-Berbamine nanocomposites and Doxorubicin, a substantial percentage of cells were in G2/M stage arrest. Caspase-3, -7, -8, -9, Bax, Bad, Cyt C, and P53 expression were considerably enhanced in K562 cells, whereas Bcl2 expression was decreased, indicating that these cells may have therapeutic potential against human blood cancer/leukemia-derived disorders. As a result, the nanocomposites demonstrated outstanding anticancer potential against leukemic cells. CuO-TiO2-Chitosan-Berbamine, according to our findings.

Abstract Image

Abstract Image

Abstract Image

CuO-TiO2-Citosan-Berbamine 纳米复合材料通过线粒体途径诱导人 K562 癌细胞系中 P53、BAX 和 BCL-2 的凋亡。
本研究用 CuO-TiO2-Citosan-Berbamine 纳米复合材料培养人慢性粒细胞白血病(K562)细胞。我们使用 XRD、DLS、FESEM、TEM、PL、EDAX 和傅立叶变换红外光谱对纳米复合材料进行了检测,并使用 MTT 检测细胞毒性和 AO/EtBr 评估细胞凋亡形态。细胞凋亡率和细胞周期停滞率是用流式细胞仪测定的。傅立叶变换红外光谱显示 CuO-TiO2-Citosan-Berbamine 纳米复合材料是静电互锁的。纳米复合材料的 XRD 信号显示其呈六边形。在 DLS 光谱中,纳米复合材料具有水动力直径。由于其细胞毒性作用,纳米复合材料显示出浓度依赖性细胞毒性。与多柔比星一样,纳米复合材料也会导致 K562 细胞的细胞周期停止。经IC50浓度的CuO-TiO2-壳聚糖-巴胺纳米复合材料和多柔比星处理后,相当大比例的细胞处于G2/M期停滞状态。K562细胞中Caspase-3、-7、-8、-9、Bax、Bad、Cyt C和P53的表达显著增强,而Bcl2的表达则有所下降,这表明这些细胞可能具有治疗人类血癌/白血病衍生疾病的潜力。因此,纳米复合材料对白血病细胞具有突出的抗癌潜力。根据我们的研究结果,CuO-TiO2-壳聚糖-伯胺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinorganic Chemistry and Applications
Bioinorganic Chemistry and Applications 化学-生化与分子生物学
CiteScore
7.00
自引率
5.30%
发文量
105
审稿时长
>12 weeks
期刊介绍: Bioinorganic Chemistry and Applications is primarily devoted to original research papers, but also publishes review articles, editorials, and letter to the editor in the general field of bioinorganic chemistry and its applications. Its scope includes all aspects of bioinorganic chemistry, including bioorganometallic chemistry and applied bioinorganic chemistry. The journal welcomes papers relating to metalloenzymes and model compounds, metal-based drugs, biomaterials, biocatalysis and bioelectronics, metals in biology and medicine, metals toxicology and metals in the environment, metal interactions with biomolecules and spectroscopic applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信