Towards a new paradigm for segregation measurement in an age of big data.

Urban informatics Pub Date : 2022-01-01 Epub Date: 2022-09-09 DOI:10.1007/s44212-022-00003-3
Qing-Quan Li, Yang Yue, Qi-Li Gao, Chen Zhong, Joana Barros
{"title":"Towards a new paradigm for segregation measurement in an age of big data.","authors":"Qing-Quan Li, Yang Yue, Qi-Li Gao, Chen Zhong, Joana Barros","doi":"10.1007/s44212-022-00003-3","DOIUrl":null,"url":null,"abstract":"<p><p>Recent theoretical and methodological advances in activity space and big data provide new opportunities to study socio-spatial segregation. This review first provides an overview of the literature in terms of measurements, spatial patterns, underlying causes, and social consequences of spatial segregation. These studies are mainly place-centred and static, ignoring the segregation experience across various activity spaces due to the dynamism of movements. In response to this challenge, we highlight the work in progress toward a new paradigm for segregation studies. Specifically, this review presents how and the extent to which activity space methods can advance segregation research from a people-based perspective. It explains the requirements of mobility-based methods for quantifying the dynamics of segregation due to high movement within the urban context. It then discusses and illustrates a dynamic and multi-dimensional framework to show how big data can enhance understanding segregation by capturing individuals' spatio-temporal behaviours. The review closes with new directions and challenges for segregation research using big data.</p>","PeriodicalId":75283,"journal":{"name":"Urban informatics","volume":" ","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458482/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44212-022-00003-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent theoretical and methodological advances in activity space and big data provide new opportunities to study socio-spatial segregation. This review first provides an overview of the literature in terms of measurements, spatial patterns, underlying causes, and social consequences of spatial segregation. These studies are mainly place-centred and static, ignoring the segregation experience across various activity spaces due to the dynamism of movements. In response to this challenge, we highlight the work in progress toward a new paradigm for segregation studies. Specifically, this review presents how and the extent to which activity space methods can advance segregation research from a people-based perspective. It explains the requirements of mobility-based methods for quantifying the dynamics of segregation due to high movement within the urban context. It then discusses and illustrates a dynamic and multi-dimensional framework to show how big data can enhance understanding segregation by capturing individuals' spatio-temporal behaviours. The review closes with new directions and challenges for segregation research using big data.

Abstract Image

Abstract Image

大数据时代的隔离测量新范式。
最近,活动空间和大数据在理论和方法上的进步为研究社会空间隔离问题提供了新的机遇。本综述首先从空间隔离的测量、空间模式、根本原因和社会后果等方面概述了相关文献。这些研究主要是以地点为中心的静态研究,忽略了由于流动的动态性而导致的各种活动空间的隔离体验。为了应对这一挑战,我们重点介绍了为建立新的隔离研究范式而正在开展的工作。具体来说,本综述介绍了活动空间方法如何以及在多大程度上可以从以人为本的角度推进隔离研究。它解释了基于流动性的方法对量化城市环境中因高流动性导致的隔离动态的要求。然后讨论并说明了一个动态和多维框架,以展示大数据如何通过捕捉个人的时空行为来加深对隔离的理解。综述最后提出了利用大数据进行隔离研究的新方向和新挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信