Charlotte Maillot, Natalia De Isla, Celine Loubiere, Dominique Toye, Eric Olmos
{"title":"Impact of microcarrier concentration on mesenchymal stem cell growth and death: Experiments and modeling","authors":"Charlotte Maillot, Natalia De Isla, Celine Loubiere, Dominique Toye, Eric Olmos","doi":"10.1002/bit.28228","DOIUrl":null,"url":null,"abstract":"<p>Mesenchymal stem cell (MSC) products are promising therapeutic candidates to treat a wide range of pathologies. The successful commercialization of these cell therapies will, however, depend on the development of reproducible cell production processes. For this, using microcarriers as growth supports within controlled conditions may be a viable process option. Although increasing microcarrier concentration may be associated with greater productivity due to the increased available culture surface, additional friction or shocks between microcarriers are likely to lead to undesired cell death. However, data detailing the impact of microcarrier collisions on MSC growth remains scarce. The following work demonstrates that MSC growth on microcarriers is greatly influenced by particle concentration even when little impact is observed on the apparent growth rate. It is suggested that the apparent growth rate may result in an equilibrium between growth and death kinetics which are independently affected by particle concentration and that certain MSC quality attributes may be progressively degraded in parallel. In addition, the theoretical reduction of the MSC growth rate was modeled according to the ratio between the average interparticle distance and the Kolmogorov scale. This study is an original contribution toward understanding the hydrodynamic effects in microcarrier-based stem cell cultures.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"119 12","pages":"3537-3548"},"PeriodicalIF":3.5000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.28228","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Mesenchymal stem cell (MSC) products are promising therapeutic candidates to treat a wide range of pathologies. The successful commercialization of these cell therapies will, however, depend on the development of reproducible cell production processes. For this, using microcarriers as growth supports within controlled conditions may be a viable process option. Although increasing microcarrier concentration may be associated with greater productivity due to the increased available culture surface, additional friction or shocks between microcarriers are likely to lead to undesired cell death. However, data detailing the impact of microcarrier collisions on MSC growth remains scarce. The following work demonstrates that MSC growth on microcarriers is greatly influenced by particle concentration even when little impact is observed on the apparent growth rate. It is suggested that the apparent growth rate may result in an equilibrium between growth and death kinetics which are independently affected by particle concentration and that certain MSC quality attributes may be progressively degraded in parallel. In addition, the theoretical reduction of the MSC growth rate was modeled according to the ratio between the average interparticle distance and the Kolmogorov scale. This study is an original contribution toward understanding the hydrodynamic effects in microcarrier-based stem cell cultures.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.