{"title":"Generalized infinite factorization models.","authors":"L Schiavon, A Canale, D B Dunson","doi":"10.1093/biomet/asab056","DOIUrl":null,"url":null,"abstract":"<p><p>Factorization models express a statistical object of interest in terms of a collection of simpler objects. For example, a matrix or tensor can be expressed as a sum of rank-one components. However, in practice, it can be challenging to infer the relative impact of the different components as well as the number of components. A popular idea is to include infinitely many components having impact decreasing with the component index. This article is motivated by two limitations of existing methods: (1) lack of careful consideration of the within component sparsity structure; and (2) no accommodation for grouped variables and other non-exchangeable structures. We propose a general class of infinite factorization models that address these limitations. Theoretical support is provided, practical gains are shown in simulation studies, and an ecology application focusing on modelling bird species occurrence is discussed.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"817-835"},"PeriodicalIF":4.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469809/pdf/nihms-1815813.pdf","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asab056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 14
Abstract
Factorization models express a statistical object of interest in terms of a collection of simpler objects. For example, a matrix or tensor can be expressed as a sum of rank-one components. However, in practice, it can be challenging to infer the relative impact of the different components as well as the number of components. A popular idea is to include infinitely many components having impact decreasing with the component index. This article is motivated by two limitations of existing methods: (1) lack of careful consideration of the within component sparsity structure; and (2) no accommodation for grouped variables and other non-exchangeable structures. We propose a general class of infinite factorization models that address these limitations. Theoretical support is provided, practical gains are shown in simulation studies, and an ecology application focusing on modelling bird species occurrence is discussed.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.