Alignment of vaccine codes using an ontology of vaccine descriptions.

IF 1.6 3区 工程技术 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Benedikt Fh Becker, Jan A Kors, Erik M van Mulligen, Miriam Cjm Sturkenboom
{"title":"Alignment of vaccine codes using an ontology of vaccine descriptions.","authors":"Benedikt Fh Becker,&nbsp;Jan A Kors,&nbsp;Erik M van Mulligen,&nbsp;Miriam Cjm Sturkenboom","doi":"10.1186/s13326-022-00278-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Vaccine information in European electronic health record (EHR) databases is represented using various clinical and database-specific coding systems and drug vocabularies. The lack of harmonization constitutes a challenge in reusing EHR data in collaborative benefit-risk studies about vaccines.</p><p><strong>Methods: </strong>We designed an ontology of the properties that are commonly used in vaccine descriptions, called Ontology of Vaccine Descriptions (VaccO), with a dictionary for the analysis of multilingual vaccine descriptions. We implemented five algorithms for the alignment of vaccine coding systems, i.e., the identification of corresponding codes from different coding ystems, based on an analysis of the code descriptors. The algorithms were evaluated by comparing their results with manually created alignments in two reference sets including clinical and database-specific coding systems with multilingual code descriptors.</p><p><strong>Results: </strong>The best-performing algorithm represented code descriptors as logical statements about entities in the VaccO ontology and used an ontology reasoner to infer common properties and identify corresponding vaccine codes. The evaluation demonstrated excellent performance of the approach (F-scores 0.91 and 0.96).</p><p><strong>Conclusion: </strong>The VaccO ontology allows the identification, representation, and comparison of heterogeneous descriptions of vaccines. The automatic alignment of vaccine coding systems can accelerate the readiness of EHR databases in collaborative vaccine studies.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":" ","pages":"24"},"PeriodicalIF":1.6000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580193/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-022-00278-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Vaccine information in European electronic health record (EHR) databases is represented using various clinical and database-specific coding systems and drug vocabularies. The lack of harmonization constitutes a challenge in reusing EHR data in collaborative benefit-risk studies about vaccines.

Methods: We designed an ontology of the properties that are commonly used in vaccine descriptions, called Ontology of Vaccine Descriptions (VaccO), with a dictionary for the analysis of multilingual vaccine descriptions. We implemented five algorithms for the alignment of vaccine coding systems, i.e., the identification of corresponding codes from different coding ystems, based on an analysis of the code descriptors. The algorithms were evaluated by comparing their results with manually created alignments in two reference sets including clinical and database-specific coding systems with multilingual code descriptors.

Results: The best-performing algorithm represented code descriptors as logical statements about entities in the VaccO ontology and used an ontology reasoner to infer common properties and identify corresponding vaccine codes. The evaluation demonstrated excellent performance of the approach (F-scores 0.91 and 0.96).

Conclusion: The VaccO ontology allows the identification, representation, and comparison of heterogeneous descriptions of vaccines. The automatic alignment of vaccine coding systems can accelerate the readiness of EHR databases in collaborative vaccine studies.

Abstract Image

Abstract Image

Abstract Image

使用疫苗描述本体对疫苗代码进行对齐。
背景:欧洲电子健康记录(EHR)数据库中的疫苗信息使用各种临床和数据库特定的编码系统和药物词汇表表示。缺乏统一构成了在疫苗利益-风险合作研究中重新使用电子病历数据的挑战。方法:我们设计了一个疫苗描述中常用属性的本体,称为疫苗描述本体(vaccine description ontology, VaccO),并带有一个用于多语言疫苗描述分析的字典。我们实施了五种对齐疫苗编码系统的算法,即基于对代码描述符的分析,从不同的编码系统中识别相应的代码。通过将其结果与两个参考集(包括具有多语言代码描述符的临床和数据库特定编码系统)中手动创建的比对结果进行比较,对算法进行评估。结果:表现最好的算法将代码描述符表示为关于VaccO本体中实体的逻辑语句,并使用本体推理器来推断共同属性并识别相应的疫苗代码。评价结果表明该方法具有良好的效果(f值分别为0.91和0.96)。结论:VaccO本体允许对疫苗的异质描述进行识别、表示和比较。疫苗编码系统的自动对齐可以加速EHR数据库在协同疫苗研究中的准备工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomedical Semantics
Journal of Biomedical Semantics MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
4.20
自引率
5.30%
发文量
28
审稿时长
30 weeks
期刊介绍: Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas: Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability. Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信