{"title":"Generation and Gene Expression Profiles of Grevy's Zebra Induced Pluripotent Stem Cells.","authors":"Yoshinori Endo, Ken-Ichiro Kamei, Kouichi Hasegawa, Keisuke Okita, Hideyuki Ito, Shiho Terada, Miho Inoue-Murayama","doi":"10.1089/scd.2021.0253","DOIUrl":null,"url":null,"abstract":"<p><p>Induced pluripotent stem cells (iPSCs) can serve as a biological resource for functional and conservation research for various species. This realization has led to the generation of iPSCs from many species, including those identified as endangered. However, the understanding of species variation in mammalian iPSCs remains largely unknown. To gain insight into species variation in iPSCs, we generated iPSCs from a new species Grevy's zebra (<i>Equus grevyi</i>; gz-iPSCs), which has been listed as endangered in the IUCN (International Union for Conservation of Nature) Red List. We isolated primary fibroblast cells from an individual and successfully reprogrammed them into iPSCs. The generated gz-iPSCs continued to grow under primed-type culture condition and showed pluripotency and differentiation potential. To describe the molecular characteristics of gz-iPSCs, we performed RNA sequencing analysis. The gz-iPSC transcriptome showed robust expression of pluripotency-associated genes reported in human and mouse, suggesting evolutionary conservation among the species. This study provides insight into the iPSCs from a rare species and helps the understanding of the gene expression basis underlying mammalian pluripotent stem cells.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":" ","pages":"250-257"},"PeriodicalIF":2.5000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2021.0253","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
Induced pluripotent stem cells (iPSCs) can serve as a biological resource for functional and conservation research for various species. This realization has led to the generation of iPSCs from many species, including those identified as endangered. However, the understanding of species variation in mammalian iPSCs remains largely unknown. To gain insight into species variation in iPSCs, we generated iPSCs from a new species Grevy's zebra (Equus grevyi; gz-iPSCs), which has been listed as endangered in the IUCN (International Union for Conservation of Nature) Red List. We isolated primary fibroblast cells from an individual and successfully reprogrammed them into iPSCs. The generated gz-iPSCs continued to grow under primed-type culture condition and showed pluripotency and differentiation potential. To describe the molecular characteristics of gz-iPSCs, we performed RNA sequencing analysis. The gz-iPSC transcriptome showed robust expression of pluripotency-associated genes reported in human and mouse, suggesting evolutionary conservation among the species. This study provides insight into the iPSCs from a rare species and helps the understanding of the gene expression basis underlying mammalian pluripotent stem cells.
期刊介绍:
Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings.
Stem Cells and Development coverage includes:
Embryogenesis and adult counterparts of this process
Physical processes linking stem cells, primary cell function, and structural development
Hypotheses exploring the relationship between genotype and phenotype
Development of vasculature, CNS, and other germ layer development and defects
Pluripotentiality of embryonic and somatic stem cells
The role of genetic and epigenetic factors in development