Rational stabilization and maximal ideal spaces of commutative Banach algebras

IF 0.5 4区 数学
Kazuhiro Kawamura
{"title":"Rational stabilization and maximal ideal spaces of commutative Banach algebras","authors":"Kazuhiro Kawamura","doi":"10.1007/s40062-022-00309-8","DOIUrl":null,"url":null,"abstract":"<div><p>For a unital commutative Banach algebra <i>A</i> and its closed ideal <i>I</i>, we study the relative Čech cohomology of the pair <span>\\((\\mathrm {Max}(A),\\mathrm {Max}(A/I))\\)</span> of maximal ideal spaces and show a relative version of the main theorem of Lupton et al. (Trans Amer Math Soc 361:267–296, 2009): <span>\\(\\check{\\mathrm {H}}^{j}(\\mathrm {Max}(A),\\mathrm {Max}(A/I));{\\mathbb {Q}}) \\cong \\pi _{2n-j-1}(Lc_{n}(I))_{{\\mathbb {Q}}}\\)</span> for <span>\\(j &lt; 2n-1\\)</span>, where <span>\\(Lc_{n}(I)\\)</span> refers to the space of last columns. We then study the rational cohomological dimension <span>\\(\\mathrm {cdim}_{\\mathbb Q}\\mathrm {Max}(A)\\)</span> for a unital commutative Banach algebra and prove an embedding theorem: if <i>A</i> is a unital commutative semi-simple regular Banach algebra such that <span>\\(\\mathrm {Max}(A)\\)</span> is metrizable and <span>\\(\\mathrm {cdim}_{{\\mathbb {Q}}}\\mathrm {Max}(A) \\le m\\)</span>, then (i) the rational homotopy group <span>\\(\\pi _{k}(GL_{n}(A))_{{\\mathbb {Q}}}\\)</span> is stabilized if <span>\\(n \\ge \\lceil (m+k+1)/2\\rceil \\)</span> and (ii) there exists a compact metrizable space <span>\\(X_A\\)</span> with <span>\\(\\dim X_{A} \\le m\\)</span> such that <i>A</i> is embedded into the commutative <span>\\(C^*\\)</span>-algebra <span>\\(C(X_{A})\\)</span> such that <span>\\(\\pi _{k}(GL_{n}(C(X_{A})))\\)</span> is rationally isomorphic to <span>\\(\\pi _{k}(GL_{n}(A))\\)</span> for each <span>\\(k\\ge 1\\)</span> and <span>\\(\\pi _{k}(GL_{n}(C(X_{A}))\\)</span> is stabilized for <span>\\(n \\ge \\lceil (m+k+1)/2 \\rceil \\)</span>. The main technical ingredient is a modified version of a classical theorem of Davie (Proc Lond Math Soc 23:31–52, 1971).</p></div>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"17 3","pages":"263 - 295"},"PeriodicalIF":0.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-022-00309-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-022-00309-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a unital commutative Banach algebra A and its closed ideal I, we study the relative Čech cohomology of the pair \((\mathrm {Max}(A),\mathrm {Max}(A/I))\) of maximal ideal spaces and show a relative version of the main theorem of Lupton et al. (Trans Amer Math Soc 361:267–296, 2009): \(\check{\mathrm {H}}^{j}(\mathrm {Max}(A),\mathrm {Max}(A/I));{\mathbb {Q}}) \cong \pi _{2n-j-1}(Lc_{n}(I))_{{\mathbb {Q}}}\) for \(j < 2n-1\), where \(Lc_{n}(I)\) refers to the space of last columns. We then study the rational cohomological dimension \(\mathrm {cdim}_{\mathbb Q}\mathrm {Max}(A)\) for a unital commutative Banach algebra and prove an embedding theorem: if A is a unital commutative semi-simple regular Banach algebra such that \(\mathrm {Max}(A)\) is metrizable and \(\mathrm {cdim}_{{\mathbb {Q}}}\mathrm {Max}(A) \le m\), then (i) the rational homotopy group \(\pi _{k}(GL_{n}(A))_{{\mathbb {Q}}}\) is stabilized if \(n \ge \lceil (m+k+1)/2\rceil \) and (ii) there exists a compact metrizable space \(X_A\) with \(\dim X_{A} \le m\) such that A is embedded into the commutative \(C^*\)-algebra \(C(X_{A})\) such that \(\pi _{k}(GL_{n}(C(X_{A})))\) is rationally isomorphic to \(\pi _{k}(GL_{n}(A))\) for each \(k\ge 1\) and \(\pi _{k}(GL_{n}(C(X_{A}))\) is stabilized for \(n \ge \lceil (m+k+1)/2 \rceil \). The main technical ingredient is a modified version of a classical theorem of Davie (Proc Lond Math Soc 23:31–52, 1971).

交换Banach代数的有理稳定与极大理想空间
对于一元交换Banach代数a及其闭理想I,研究了它们对的相对Čech上同调 \((\mathrm {Max}(A),\mathrm {Max}(A/I))\) 并给出了Lupton等人的主要定理的一个相对版本(Trans Amer Math Soc 361:267-296, 2009): \(\check{\mathrm {H}}^{j}(\mathrm {Max}(A),\mathrm {Max}(A/I));{\mathbb {Q}}) \cong \pi _{2n-j-1}(Lc_{n}(I))_{{\mathbb {Q}}}\) 为了 \(j < 2n-1\),其中 \(Lc_{n}(I)\) 指最后一列的空间。然后我们研究了有理上同维 \(\mathrm {cdim}_{\mathbb Q}\mathrm {Max}(A)\) 并证明了一个嵌入定理:如果a是一个单位可交换半简单正则巴拿赫代数,使得 \(\mathrm {Max}(A)\) 是可度量的 \(\mathrm {cdim}_{{\mathbb {Q}}}\mathrm {Max}(A) \le m\),则(i)有理同伦群 \(\pi _{k}(GL_{n}(A))_{{\mathbb {Q}}}\) 是稳定的 \(n \ge \lceil (m+k+1)/2\rceil \) 并且(ii)存在紧致的可度量空间 \(X_A\) 有 \(\dim X_{A} \le m\) 使得A嵌入到交换律中 \(C^*\)-代数 \(C(X_{A})\) 这样 \(\pi _{k}(GL_{n}(C(X_{A})))\) 理性同构于 \(\pi _{k}(GL_{n}(A))\) 对于每一个 \(k\ge 1\) 和 \(\pi _{k}(GL_{n}(C(X_{A}))\) 是稳定的 \(n \ge \lceil (m+k+1)/2 \rceil \). 主要的技术成分是david经典定理的修改版本(Proc lod Math Soc 23:31-52, 1971)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信