{"title":"Rational stabilization and maximal ideal spaces of commutative Banach algebras","authors":"Kazuhiro Kawamura","doi":"10.1007/s40062-022-00309-8","DOIUrl":null,"url":null,"abstract":"<div><p>For a unital commutative Banach algebra <i>A</i> and its closed ideal <i>I</i>, we study the relative Čech cohomology of the pair <span>\\((\\mathrm {Max}(A),\\mathrm {Max}(A/I))\\)</span> of maximal ideal spaces and show a relative version of the main theorem of Lupton et al. (Trans Amer Math Soc 361:267–296, 2009): <span>\\(\\check{\\mathrm {H}}^{j}(\\mathrm {Max}(A),\\mathrm {Max}(A/I));{\\mathbb {Q}}) \\cong \\pi _{2n-j-1}(Lc_{n}(I))_{{\\mathbb {Q}}}\\)</span> for <span>\\(j < 2n-1\\)</span>, where <span>\\(Lc_{n}(I)\\)</span> refers to the space of last columns. We then study the rational cohomological dimension <span>\\(\\mathrm {cdim}_{\\mathbb Q}\\mathrm {Max}(A)\\)</span> for a unital commutative Banach algebra and prove an embedding theorem: if <i>A</i> is a unital commutative semi-simple regular Banach algebra such that <span>\\(\\mathrm {Max}(A)\\)</span> is metrizable and <span>\\(\\mathrm {cdim}_{{\\mathbb {Q}}}\\mathrm {Max}(A) \\le m\\)</span>, then (i) the rational homotopy group <span>\\(\\pi _{k}(GL_{n}(A))_{{\\mathbb {Q}}}\\)</span> is stabilized if <span>\\(n \\ge \\lceil (m+k+1)/2\\rceil \\)</span> and (ii) there exists a compact metrizable space <span>\\(X_A\\)</span> with <span>\\(\\dim X_{A} \\le m\\)</span> such that <i>A</i> is embedded into the commutative <span>\\(C^*\\)</span>-algebra <span>\\(C(X_{A})\\)</span> such that <span>\\(\\pi _{k}(GL_{n}(C(X_{A})))\\)</span> is rationally isomorphic to <span>\\(\\pi _{k}(GL_{n}(A))\\)</span> for each <span>\\(k\\ge 1\\)</span> and <span>\\(\\pi _{k}(GL_{n}(C(X_{A}))\\)</span> is stabilized for <span>\\(n \\ge \\lceil (m+k+1)/2 \\rceil \\)</span>. The main technical ingredient is a modified version of a classical theorem of Davie (Proc Lond Math Soc 23:31–52, 1971).</p></div>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"17 3","pages":"263 - 295"},"PeriodicalIF":0.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-022-00309-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-022-00309-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For a unital commutative Banach algebra A and its closed ideal I, we study the relative Čech cohomology of the pair \((\mathrm {Max}(A),\mathrm {Max}(A/I))\) of maximal ideal spaces and show a relative version of the main theorem of Lupton et al. (Trans Amer Math Soc 361:267–296, 2009): \(\check{\mathrm {H}}^{j}(\mathrm {Max}(A),\mathrm {Max}(A/I));{\mathbb {Q}}) \cong \pi _{2n-j-1}(Lc_{n}(I))_{{\mathbb {Q}}}\) for \(j < 2n-1\), where \(Lc_{n}(I)\) refers to the space of last columns. We then study the rational cohomological dimension \(\mathrm {cdim}_{\mathbb Q}\mathrm {Max}(A)\) for a unital commutative Banach algebra and prove an embedding theorem: if A is a unital commutative semi-simple regular Banach algebra such that \(\mathrm {Max}(A)\) is metrizable and \(\mathrm {cdim}_{{\mathbb {Q}}}\mathrm {Max}(A) \le m\), then (i) the rational homotopy group \(\pi _{k}(GL_{n}(A))_{{\mathbb {Q}}}\) is stabilized if \(n \ge \lceil (m+k+1)/2\rceil \) and (ii) there exists a compact metrizable space \(X_A\) with \(\dim X_{A} \le m\) such that A is embedded into the commutative \(C^*\)-algebra \(C(X_{A})\) such that \(\pi _{k}(GL_{n}(C(X_{A})))\) is rationally isomorphic to \(\pi _{k}(GL_{n}(A))\) for each \(k\ge 1\) and \(\pi _{k}(GL_{n}(C(X_{A}))\) is stabilized for \(n \ge \lceil (m+k+1)/2 \rceil \). The main technical ingredient is a modified version of a classical theorem of Davie (Proc Lond Math Soc 23:31–52, 1971).
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.