Isabel Gonzalez-Vallejo, Azize Koç, Klaus Reimann, Michael Woerner, Thomas Elsaesser
{"title":"Underdamped longitudinal soft modes in ionic crystallites-lattice and charge motions observed by ultrafast x-ray diffraction.","authors":"Isabel Gonzalez-Vallejo, Azize Koç, Klaus Reimann, Michael Woerner, Thomas Elsaesser","doi":"10.1063/4.0000143","DOIUrl":null,"url":null,"abstract":"<p><p>Soft modes in crystals are lattice vibrations with frequencies that decrease and eventually vanish as the temperature approaches a critical point, e.g., a structural change due to a phase transition. In ionic para- or ferroelectric materials, the frequency decrease is connected with a diverging electric susceptibility and, for infrared active modes, a strong increase in oscillator strength. The traditional picture describes soft modes as overdamped transverse optical phonons of a hybrid vibrational-electronic character. In this context, potassium dihydrogen phosphate (KH<sub>2</sub>PO<sub>4</sub>, KDP) has been studied for decades as a prototypical material with, however, inconclusive results regarding the soft modes in its para- and ferroelectric phase. There are conflicting assignments of soft-mode frequencies and damping parameters. We report the first observation of a longitudinal underdamped soft mode in paraelectric KDP. Upon impulsive femtosecond Raman excitation of coherent low-frequency phonons in the electronic ground state of KDP crystallites, transient powder diffraction patterns are recorded with femtosecond hard x-ray pulses. Electron density maps derived from the x-ray data reveal oscillatory charge relocations over interatomic distances, much larger than the sub-picometer nuclear displacements, a direct hallmark of soft-mode behavior. The strongly underdamped character of the soft mode manifests in charge oscillations persisting for more than 10 ps. The soft-mode frequency decreases from 0.55 THz at <i>T </i>=<i> </i>295 K to 0.39 THz at <i>T </i>=<i> </i>175 K. An analysis of the Raman excitation conditions in crystallites and the weak damping demonstrate a longitudinal character. Our results extend soft-mode physics well beyond the traditional picture and pave the way for an atomic-level characterization of soft modes.</p>","PeriodicalId":520783,"journal":{"name":"Structural dynamics (Melville, N.Y.)","volume":" ","pages":"024501"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906907/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural dynamics (Melville, N.Y.)","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Soft modes in crystals are lattice vibrations with frequencies that decrease and eventually vanish as the temperature approaches a critical point, e.g., a structural change due to a phase transition. In ionic para- or ferroelectric materials, the frequency decrease is connected with a diverging electric susceptibility and, for infrared active modes, a strong increase in oscillator strength. The traditional picture describes soft modes as overdamped transverse optical phonons of a hybrid vibrational-electronic character. In this context, potassium dihydrogen phosphate (KH2PO4, KDP) has been studied for decades as a prototypical material with, however, inconclusive results regarding the soft modes in its para- and ferroelectric phase. There are conflicting assignments of soft-mode frequencies and damping parameters. We report the first observation of a longitudinal underdamped soft mode in paraelectric KDP. Upon impulsive femtosecond Raman excitation of coherent low-frequency phonons in the electronic ground state of KDP crystallites, transient powder diffraction patterns are recorded with femtosecond hard x-ray pulses. Electron density maps derived from the x-ray data reveal oscillatory charge relocations over interatomic distances, much larger than the sub-picometer nuclear displacements, a direct hallmark of soft-mode behavior. The strongly underdamped character of the soft mode manifests in charge oscillations persisting for more than 10 ps. The soft-mode frequency decreases from 0.55 THz at T =295 K to 0.39 THz at T =175 K. An analysis of the Raman excitation conditions in crystallites and the weak damping demonstrate a longitudinal character. Our results extend soft-mode physics well beyond the traditional picture and pave the way for an atomic-level characterization of soft modes.