AxonQuant: A Microfluidic Chamber Culture-Coupled Algorithm That Allows High-Throughput Quantification of Axonal Damage.

Q1 Medicine
Neurosignals Pub Date : 2014-01-01 Epub Date: 2014-02-28 DOI:10.1159/000358092
Yang Li, Mengxue Yang, Zhuo Huang, Xiaoping Chen, Michael T Maloney, Li Zhu, Jianghong Liu, Yanmin Yang, Sidan Du, Xingyu Jiang, Jane Y Wu
{"title":"AxonQuant: A Microfluidic Chamber Culture-Coupled Algorithm That Allows High-Throughput Quantification of Axonal Damage.","authors":"Yang Li,&nbsp;Mengxue Yang,&nbsp;Zhuo Huang,&nbsp;Xiaoping Chen,&nbsp;Michael T Maloney,&nbsp;Li Zhu,&nbsp;Jianghong Liu,&nbsp;Yanmin Yang,&nbsp;Sidan Du,&nbsp;Xingyu Jiang,&nbsp;Jane Y Wu","doi":"10.1159/000358092","DOIUrl":null,"url":null,"abstract":"<p><p>Published methods for imaging and quantitatively analyzing morphological changes in neuronal axons have serious limitations because of their small sample sizes, and their time-consuming and nonobjective nature. Here we present an improved microfluidic chamber design suitable for fast and high-throughput imaging of neuronal axons. We developed the AxonQuant algorithm, which is suitable for automatic processing of axonal imaging data. This microfluidic chamber-coupled algorithm allows calculation of an 'axonal continuity index' that quantitatively measures axonal health status in a manner independent of neuronal or axonal density. This method allows quantitative analysis of axonal morphology in an automatic and nonbiased manner. Our method will facilitate large-scale high-throughput screening for genes or therapeutic compounds for neurodegenerative diseases involving axonal damage. When combined with imaging technologies utilizing different gene markers, this method will provide new insights into the mechanistic basis for axon degeneration. Our microfluidic chamber culture-coupled AxonQuant algorithm will be widely useful for studying axonal biology and neurodegenerative disorders.</p>","PeriodicalId":19171,"journal":{"name":"Neurosignals","volume":" ","pages":"14-29"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000358092","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurosignals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000358092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 12

Abstract

Published methods for imaging and quantitatively analyzing morphological changes in neuronal axons have serious limitations because of their small sample sizes, and their time-consuming and nonobjective nature. Here we present an improved microfluidic chamber design suitable for fast and high-throughput imaging of neuronal axons. We developed the AxonQuant algorithm, which is suitable for automatic processing of axonal imaging data. This microfluidic chamber-coupled algorithm allows calculation of an 'axonal continuity index' that quantitatively measures axonal health status in a manner independent of neuronal or axonal density. This method allows quantitative analysis of axonal morphology in an automatic and nonbiased manner. Our method will facilitate large-scale high-throughput screening for genes or therapeutic compounds for neurodegenerative diseases involving axonal damage. When combined with imaging technologies utilizing different gene markers, this method will provide new insights into the mechanistic basis for axon degeneration. Our microfluidic chamber culture-coupled AxonQuant algorithm will be widely useful for studying axonal biology and neurodegenerative disorders.

Abstract Image

Abstract Image

Abstract Image

AxonQuant:一个微流体室培养耦合算法,允许轴突损伤的高通量定量。
已发表的成像和定量分析神经元轴突形态变化的方法有严重的局限性,因为它们的样本量小,耗时和非客观的性质。在这里,我们提出了一种改进的微流控室设计,适用于神经元轴突的快速和高通量成像。提出了适用于轴突成像数据自动处理的AxonQuant算法。这种微流控腔耦合算法允许计算“轴突连续性指数”,以独立于神经元或轴突密度的方式定量测量轴突健康状态。这种方法允许轴突形态的定量分析在自动和无偏的方式。我们的方法将促进涉及轴突损伤的神经退行性疾病的基因或治疗化合物的大规模高通量筛选。当与利用不同基因标记的成像技术相结合时,该方法将为轴突变性的机制基础提供新的见解。我们的微流控室培养耦合轴突定量算法将广泛应用于轴突生物学和神经退行性疾病的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurosignals
Neurosignals 医学-神经科学
CiteScore
3.40
自引率
0.00%
发文量
3
审稿时长
>12 weeks
期刊介绍: Neurosignals is an international journal dedicated to publishing original articles and reviews in the field of neuronal communication. Novel findings related to signaling molecules, channels and transporters, pathways and networks that are associated with development and function of the nervous system are welcome. The scope of the journal includes genetics, molecular biology, bioinformatics, (patho)physiology, (patho)biochemistry, pharmacology & toxicology, imaging and clinical neurology & psychiatry. Reported observations should significantly advance our understanding of neuronal signaling in health & disease and be presented in a format applicable to an interdisciplinary readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信