{"title":"Modeling, simulation and analysis of methylation profiles from reduced representation bisulfite sequencing experiments.","authors":"Michelle R Lacey, Carl Baribault, Melanie Ehrlich","doi":"10.1515/sagmb-2013-0027","DOIUrl":null,"url":null,"abstract":"<p><p>The ENCODE project has funded the generation of a diverse collection of methylation profiles using reduced representation bisulfite sequencing (RRBS) technology, enabling the analysis of epigenetic variation on a genomic scale at single-site resolution. A standard application of RRBS experiments is in the location of differentially methylated regions (DMRs) between two sets of samples. Despite numerous publications reporting DMRs identified from RRBS datasets, there have been no formal analyses of the effects of experimental and biological factors on the performance of existing or newly developed analytical methods. These factors include variable read coverage, differing group sample sizes across genomic regions, uneven spacing between CpG dinucleotide sites, and correlation in methylation levels among sites in close proximity. To better understand the interplay among technical and biological variables in the analysis of RRBS methylation profiles, we have developed an algorithm for the generation of experimentally realistic RRBS datasets. Applying insights derived from our simulation studies, we present a novel procedure that can identify DMRs spanning as few as three CpG sites with both high sensitivity and specificity. Using RRBS data from muscle vs. non-muscle cell cultures as an example, we demonstrate that our method reveals many more DMRs that are likely to be of biological significance than previous methods.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"12 6","pages":"723-42"},"PeriodicalIF":0.8000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2013-0027","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2013-0027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 25
Abstract
The ENCODE project has funded the generation of a diverse collection of methylation profiles using reduced representation bisulfite sequencing (RRBS) technology, enabling the analysis of epigenetic variation on a genomic scale at single-site resolution. A standard application of RRBS experiments is in the location of differentially methylated regions (DMRs) between two sets of samples. Despite numerous publications reporting DMRs identified from RRBS datasets, there have been no formal analyses of the effects of experimental and biological factors on the performance of existing or newly developed analytical methods. These factors include variable read coverage, differing group sample sizes across genomic regions, uneven spacing between CpG dinucleotide sites, and correlation in methylation levels among sites in close proximity. To better understand the interplay among technical and biological variables in the analysis of RRBS methylation profiles, we have developed an algorithm for the generation of experimentally realistic RRBS datasets. Applying insights derived from our simulation studies, we present a novel procedure that can identify DMRs spanning as few as three CpG sites with both high sensitivity and specificity. Using RRBS data from muscle vs. non-muscle cell cultures as an example, we demonstrate that our method reveals many more DMRs that are likely to be of biological significance than previous methods.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.