Pedro Conceição, Dejan Govc, Jānis Lazovskis, Ran Levi, Henri Riihimäki, Jason P Smith
{"title":"An application of neighbourhoods in digraphs to the classification of binary dynamics.","authors":"Pedro Conceição, Dejan Govc, Jānis Lazovskis, Ran Levi, Henri Riihimäki, Jason P Smith","doi":"10.1162/netn_a_00228","DOIUrl":null,"url":null,"abstract":"<p><p>A binary state on a graph means an assignment of binary values to its vertices. A time-dependent sequence of binary states is referred to as binary dynamics. We describe a method for the classification of binary dynamics of digraphs, using particular choices of closed neighbourhoods. Our motivation and application comes from neuroscience, where a directed graph is an abstraction of neurons and their connections, and where the simplification of large amounts of data is key to any computation. We present a topological/graph theoretic method for extracting information out of binary dynamics on a graph, based on a selection of a relatively small number of vertices and their neighbourhoods. We consider existing and introduce new real-valued functions on closed neighbourhoods, comparing them by their ability to accurately classify different binary dynamics. We describe a classification algorithm that uses two parameters and sets up a machine learning pipeline. We demonstrate the effectiveness of the method on simulated activity on a digital reconstruction of cortical tissue of a rat, and on a nonbiological random graph with similar density.</p>","PeriodicalId":520719,"journal":{"name":"Network neuroscience (Cambridge, Mass.)","volume":" ","pages":"528-551"},"PeriodicalIF":3.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208003/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network neuroscience (Cambridge, Mass.)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A binary state on a graph means an assignment of binary values to its vertices. A time-dependent sequence of binary states is referred to as binary dynamics. We describe a method for the classification of binary dynamics of digraphs, using particular choices of closed neighbourhoods. Our motivation and application comes from neuroscience, where a directed graph is an abstraction of neurons and their connections, and where the simplification of large amounts of data is key to any computation. We present a topological/graph theoretic method for extracting information out of binary dynamics on a graph, based on a selection of a relatively small number of vertices and their neighbourhoods. We consider existing and introduce new real-valued functions on closed neighbourhoods, comparing them by their ability to accurately classify different binary dynamics. We describe a classification algorithm that uses two parameters and sets up a machine learning pipeline. We demonstrate the effectiveness of the method on simulated activity on a digital reconstruction of cortical tissue of a rat, and on a nonbiological random graph with similar density.