Improving the local climate zone classification with building height, imperviousness, and machine learning for urban models.

IF 3.2 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Computational urban science Pub Date : 2022-01-01 Epub Date: 2022-06-18 DOI:10.1007/s43762-022-00046-x
Kwun Yip Fung, Zong-Liang Yang, Dev Niyogi
{"title":"Improving the local climate zone classification with building height, imperviousness, and machine learning for urban models.","authors":"Kwun Yip Fung,&nbsp;Zong-Liang Yang,&nbsp;Dev Niyogi","doi":"10.1007/s43762-022-00046-x","DOIUrl":null,"url":null,"abstract":"<p><p>The Local Climate Zone (LCZ) classification is already widely used in urban heat island and other climate studies. The current classification method does not incorporate crucial urban auxiliary GIS data on building height and imperviousness that could significantly improve urban-type LCZ classification utility as well as accuracy. This study utilized a hybrid GIS- and remote sensing imagery-based framework to systematically compare and evaluate different machine and deep learning methods. The Convolution Neural Network (CNN) classifier outperforms in terms of accuracy, but it requires multi-pixel input, which reduces the output's spatial resolution and creates a tradeoff between accuracy and spatial resolution. The Random Forest (RF) classifier performs best among the single-pixel classifiers. This study also shows that incorporating building height dataset improves the accuracy of the high- and mid-rise classes in the RF classifiers, whereas an imperviousness dataset improves the low-rise classes. The single-pass forward permutation test reveals that both auxiliary datasets dominate the classification accuracy in the RF classifier, while near-infrared and thermal infrared are the dominating features in the CNN classifier. These findings show that the conventional LCZ classification framework used in the World Urban Database and Access Portal Tools (WUDAPT) can be improved by adopting building height and imperviousness information. This framework can be easily applied to different cities to generate LCZ maps for urban models.</p>","PeriodicalId":72667,"journal":{"name":"Computational urban science","volume":" ","pages":"16"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206637/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational urban science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43762-022-00046-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 5

Abstract

The Local Climate Zone (LCZ) classification is already widely used in urban heat island and other climate studies. The current classification method does not incorporate crucial urban auxiliary GIS data on building height and imperviousness that could significantly improve urban-type LCZ classification utility as well as accuracy. This study utilized a hybrid GIS- and remote sensing imagery-based framework to systematically compare and evaluate different machine and deep learning methods. The Convolution Neural Network (CNN) classifier outperforms in terms of accuracy, but it requires multi-pixel input, which reduces the output's spatial resolution and creates a tradeoff between accuracy and spatial resolution. The Random Forest (RF) classifier performs best among the single-pixel classifiers. This study also shows that incorporating building height dataset improves the accuracy of the high- and mid-rise classes in the RF classifiers, whereas an imperviousness dataset improves the low-rise classes. The single-pass forward permutation test reveals that both auxiliary datasets dominate the classification accuracy in the RF classifier, while near-infrared and thermal infrared are the dominating features in the CNN classifier. These findings show that the conventional LCZ classification framework used in the World Urban Database and Access Portal Tools (WUDAPT) can be improved by adopting building height and imperviousness information. This framework can be easily applied to different cities to generate LCZ maps for urban models.

Abstract Image

Abstract Image

Abstract Image

利用建筑高度、不透水性和城市模型的机器学习改进局部气候带分类。
局部气候带(LCZ)分类已经广泛应用于城市热岛和其他气候研究。目前的分类方法没有纳入关键的城市辅助GIS数据,如建筑高度和不透水性,这些数据可以显著提高城市型LCZ分类的效用和准确性。本研究利用基于GIS和遥感图像的混合框架,系统地比较和评估不同的机器和深度学习方法。卷积神经网络(CNN)分类器在精度方面表现出色,但它需要多像素输入,这降低了输出的空间分辨率,并在精度和空间分辨率之间进行权衡。随机森林(RF)分类器在单像素分类器中表现最好。该研究还表明,结合建筑高度数据集可以提高射频分类器中高层和中层建筑类别的准确性,而不透水数据集可以提高低层建筑类别的准确性。单次前向排列测试表明,RF分类器的分类精度主要由两个辅助数据集决定,而CNN分类器的分类精度主要由近红外和热红外数据集决定。这些结果表明,采用建筑高度和不透水信息可以改进世界城市数据库和访问门户工具(WUDAPT)中使用的传统LCZ分类框架。这个框架可以很容易地应用到不同的城市,为城市模型生成LCZ地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信