Motohiko Takenaka, Hideki Inoue, Atsushi Takeshima, Tomonori Kakura, Toshiyuki Hori
{"title":"C. elegans Rassf homolog, rasf-1, is functionally associated with rab-39 Rab GTPase in oxidative stress response.","authors":"Motohiko Takenaka, Hideki Inoue, Atsushi Takeshima, Tomonori Kakura, Toshiyuki Hori","doi":"10.1111/gtc.12028","DOIUrl":null,"url":null,"abstract":"<p><p>The Ras association domain family (Rassf) is one of the Ras effectors, which can bind to several GTP-charged Ras-like GTPases. The Rassf proteins are widely conserved beyond species from nematode to human. To explore the novel functions of Rassf proteins, we took advantage of nematode C. elegans as a model animal with only one Rassf homolog, T24F1.3 (rasf-1). The rasf-1-mutant as well as rasf-1-knockdown animals were found to be more sensitive to oxidative stress of arsenite than in wild type, indicating that rasf-1 is involved in oxidative stress response. We next screened for proteins that interact with RASF-1 by the yeast two-hybrid system and identified RAB-39 Rab GTPase as an interacting partner of RASF-1. We not only confirmed specific binding between these molecules but also demonstrated that RASF-1 binds to GTP-bound form but not GDP-bound form of RAB-39. Importantly, rab-39 mutant animals were also sensitive to oxidative stress, which was dependent on rasf-1 according to the epistasis analysis. Moreover, Rassf1 and Rab39, mammalian homologs of rasf-1 and rab-39, respectively, were shown to interact with each other in vitro. These results indicate that the RASF-1 functionally interacts with RAB-39 and that the interaction between their homologs is conserved in mammals.</p>","PeriodicalId":520630,"journal":{"name":"Genes to cells : devoted to molecular & cellular mechanisms","volume":" ","pages":"203-10"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/gtc.12028","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes to cells : devoted to molecular & cellular mechanisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/gtc.12028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The Ras association domain family (Rassf) is one of the Ras effectors, which can bind to several GTP-charged Ras-like GTPases. The Rassf proteins are widely conserved beyond species from nematode to human. To explore the novel functions of Rassf proteins, we took advantage of nematode C. elegans as a model animal with only one Rassf homolog, T24F1.3 (rasf-1). The rasf-1-mutant as well as rasf-1-knockdown animals were found to be more sensitive to oxidative stress of arsenite than in wild type, indicating that rasf-1 is involved in oxidative stress response. We next screened for proteins that interact with RASF-1 by the yeast two-hybrid system and identified RAB-39 Rab GTPase as an interacting partner of RASF-1. We not only confirmed specific binding between these molecules but also demonstrated that RASF-1 binds to GTP-bound form but not GDP-bound form of RAB-39. Importantly, rab-39 mutant animals were also sensitive to oxidative stress, which was dependent on rasf-1 according to the epistasis analysis. Moreover, Rassf1 and Rab39, mammalian homologs of rasf-1 and rab-39, respectively, were shown to interact with each other in vitro. These results indicate that the RASF-1 functionally interacts with RAB-39 and that the interaction between their homologs is conserved in mammals.