Mapping spaces and R-completion

Pub Date : 2018-02-01 DOI:10.1007/s40062-018-0196-4
David Blanc, Debasis Sen
{"title":"Mapping spaces and R-completion","authors":"David Blanc,&nbsp;Debasis Sen","doi":"10.1007/s40062-018-0196-4","DOIUrl":null,"url":null,"abstract":"<p>We study the questions of how to recognize when a simplicial set <i>X</i> is of the form <span>\\(X={\\text {map}}_{*}({\\mathbf {Y}},{\\mathbf {A}})\\)</span>, for a given space <span>\\({\\mathbf {A}}\\)</span>, and how to recover <span>\\({\\mathbf {Y}}\\)</span> from <i>X</i>, if so. A full answer is provided when <span>\\({\\mathbf {A}}={\\mathbf {K}}({R},{n})\\)</span>, for <span>\\(R=\\mathbb F_{p}\\)</span> or <span>\\(\\mathbb Q\\)</span>, in terms of a <i>mapping algebra </i> structure on <i>X</i> (defined in terms of product-preserving simplicial functors out of a certain simplicially enriched sketch <span>\\(\\varvec{\\Theta }\\)</span>). In addition, when <span>\\({\\mathbf {A}}=\\Omega ^{\\infty }{\\mathcal {A}}\\)</span> for a suitable connective ring spectrum <span>\\({\\mathcal {A}}\\)</span>, we can <i>recover</i> <span>\\({\\mathbf {Y}}\\)</span> from <span>\\({\\text {map}}_{*}({\\mathbf {Y}},{\\mathbf {A}})\\)</span>, given such a mapping algebra structure. This can be made more explicit when <span>\\({\\mathbf {A}}={\\mathbf {K}}({R},{n})\\)</span> for some commutative ring <i>R</i>. Finally, our methods provide a new way of looking at the classical Bousfield–Kan <i>R</i>-completion.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0196-4","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0196-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We study the questions of how to recognize when a simplicial set X is of the form \(X={\text {map}}_{*}({\mathbf {Y}},{\mathbf {A}})\), for a given space \({\mathbf {A}}\), and how to recover \({\mathbf {Y}}\) from X, if so. A full answer is provided when \({\mathbf {A}}={\mathbf {K}}({R},{n})\), for \(R=\mathbb F_{p}\) or \(\mathbb Q\), in terms of a mapping algebra structure on X (defined in terms of product-preserving simplicial functors out of a certain simplicially enriched sketch \(\varvec{\Theta }\)). In addition, when \({\mathbf {A}}=\Omega ^{\infty }{\mathcal {A}}\) for a suitable connective ring spectrum \({\mathcal {A}}\), we can recover \({\mathbf {Y}}\) from \({\text {map}}_{*}({\mathbf {Y}},{\mathbf {A}})\), given such a mapping algebra structure. This can be made more explicit when \({\mathbf {A}}={\mathbf {K}}({R},{n})\) for some commutative ring R. Finally, our methods provide a new way of looking at the classical Bousfield–Kan R-completion.

分享
查看原文
映射空间和r补全
我们研究了如何识别一个简单集合X的形式 \(X={\text {map}}_{*}({\mathbf {Y}},{\mathbf {A}})\),对于给定的空间 \({\mathbf {A}}\),以及如何恢复 \({\mathbf {Y}}\) 从X,如果有的话。提供完整的答案 \({\mathbf {A}}={\mathbf {K}}({R},{n})\),为 \(R=\mathbb F_{p}\) 或 \(\mathbb Q\),表示X上的映射代数结构(定义为从某个简富草图中得到的保积简函子) \(\varvec{\Theta }\)). 此外,当 \({\mathbf {A}}=\Omega ^{\infty }{\mathcal {A}}\) 得到合适的连接环谱 \({\mathcal {A}}\),我们可以恢复 \({\mathbf {Y}}\) 从 \({\text {map}}_{*}({\mathbf {Y}},{\mathbf {A}})\),给出这样一个映射代数结构。可以更明确地说明 \({\mathbf {A}}={\mathbf {K}}({R},{n})\) 最后,我们的方法提供了一种观察经典Bousfield-Kan r补全的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信