Jeong Ah Kim, Eui Yun Jang, Tae June Kang, Sungjun Yoon, Raquel Ovalle-Robles, Won Jong Rhee, Taewoo Kim, Ray H Baughman, Yong Hyup Kim, Tai Hyun Park
{"title":"Regulation of morphogenesis and neural differentiation of human mesenchymal stem cells using carbon nanotube sheets.","authors":"Jeong Ah Kim, Eui Yun Jang, Tae June Kang, Sungjun Yoon, Raquel Ovalle-Robles, Won Jong Rhee, Taewoo Kim, Ray H Baughman, Yong Hyup Kim, Tai Hyun Park","doi":"10.1039/c2ib20017a","DOIUrl":null,"url":null,"abstract":"<p><p>In order to successfully utilize stem cells for therapeutic applications in regenerative medicine, efficient differentiation into a specific cell lineage and guidance of axons in a desired direction is crucial. Here, we used aligned multi-walled carbon nanotube (MWCNT) sheets to differentiate human mesenchymal stem cells (hMSCs) into neural cells. Human MSCs present a preferential adhesion to aligned CNT sheets with longitudinal stretch parallel to the CNT orientation direction. Cell elongation was 2-fold higher than the control and most of the cells were aligned on CNT sheets within 5° from the CNT orientation direction. Furthermore, a significant, synergistic enhancement of neural differentiation was observed in hMSCs cultured on the CNT sheets. Axon outgrowth was also controlled using nanoscale patterning of CNTs. This CNT sheet provides a new cellular scaffold platform that can regulate morphogenesis and differentiation of stem cells, which could open up a new approach for tissue and stem cell regeneration.</p>","PeriodicalId":520649,"journal":{"name":"Integrative biology : quantitative biosciences from nano to macro","volume":" ","pages":"587-94"},"PeriodicalIF":1.4000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/c2ib20017a","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative biology : quantitative biosciences from nano to macro","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1039/c2ib20017a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/4/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38
Abstract
In order to successfully utilize stem cells for therapeutic applications in regenerative medicine, efficient differentiation into a specific cell lineage and guidance of axons in a desired direction is crucial. Here, we used aligned multi-walled carbon nanotube (MWCNT) sheets to differentiate human mesenchymal stem cells (hMSCs) into neural cells. Human MSCs present a preferential adhesion to aligned CNT sheets with longitudinal stretch parallel to the CNT orientation direction. Cell elongation was 2-fold higher than the control and most of the cells were aligned on CNT sheets within 5° from the CNT orientation direction. Furthermore, a significant, synergistic enhancement of neural differentiation was observed in hMSCs cultured on the CNT sheets. Axon outgrowth was also controlled using nanoscale patterning of CNTs. This CNT sheet provides a new cellular scaffold platform that can regulate morphogenesis and differentiation of stem cells, which could open up a new approach for tissue and stem cell regeneration.