MsDpo4-a DinB Homolog from Mycobacterium smegmatis-Is an Error-Prone DNA Polymerase That Can Promote G:T and T:G Mismatches.

IF 1.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Nucleic Acids Pub Date : 2012-01-01 Epub Date: 2012-03-15 DOI:10.1155/2012/285481
Amit Sharma, Deepak T Nair
{"title":"MsDpo4-a DinB Homolog from Mycobacterium smegmatis-Is an Error-Prone DNA Polymerase That Can Promote G:T and T:G Mismatches.","authors":"Amit Sharma,&nbsp;Deepak T Nair","doi":"10.1155/2012/285481","DOIUrl":null,"url":null,"abstract":"<p><p>Error-prone DNA synthesis in prokaryotes imparts plasticity to the genome to allow for evolution in unfavorable environmental conditions, and this phenomenon is termed adaptive mutagenesis. At a molecular level, adaptive mutagenesis is mediated by upregulating the expression of specialized error-prone DNA polymerases that generally belong to the Y-family, such as the polypeptide product of the dinB gene in case of E. coli. However, unlike E. coli, it has been seen that expression of the homologs of dinB in Mycobacterium tuberculosis are not upregulated under conditions of stress. These studies suggest that DinB homologs in Mycobacteria might not be able to promote mismatches and participate in adaptive mutagenesis. We show that a representative homolog from Mycobacterium smegmatis (MsDpo4) can carry out template-dependent nucleotide incorporation and therefore is a DNA polymerase. In addition, it is seen that MsDpo4 is also capable of misincorporation with a significant ability to promote G:T and T:G mismatches. The frequency of misincorporation for these two mismatches is similar to that exhibited by archaeal and prokaryotic homologs. Overall, our data show that MsDpo4 has the capacity to facilitate transition mutations and can potentially impart plasticity to the genome.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/285481","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nucleic Acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/285481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/3/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 22

Abstract

Error-prone DNA synthesis in prokaryotes imparts plasticity to the genome to allow for evolution in unfavorable environmental conditions, and this phenomenon is termed adaptive mutagenesis. At a molecular level, adaptive mutagenesis is mediated by upregulating the expression of specialized error-prone DNA polymerases that generally belong to the Y-family, such as the polypeptide product of the dinB gene in case of E. coli. However, unlike E. coli, it has been seen that expression of the homologs of dinB in Mycobacterium tuberculosis are not upregulated under conditions of stress. These studies suggest that DinB homologs in Mycobacteria might not be able to promote mismatches and participate in adaptive mutagenesis. We show that a representative homolog from Mycobacterium smegmatis (MsDpo4) can carry out template-dependent nucleotide incorporation and therefore is a DNA polymerase. In addition, it is seen that MsDpo4 is also capable of misincorporation with a significant ability to promote G:T and T:G mismatches. The frequency of misincorporation for these two mismatches is similar to that exhibited by archaeal and prokaryotic homologs. Overall, our data show that MsDpo4 has the capacity to facilitate transition mutations and can potentially impart plasticity to the genome.

Abstract Image

Abstract Image

Abstract Image

来自耻垢分枝杆菌的MsDpo4-a DinB同源物-是一种容易出错的DNA聚合酶,可以促进G:T和T:G错配
原核生物中容易出错的DNA合成赋予了基因组可塑性,使其能够在不利的环境条件下进化,这种现象被称为适应性突变。在分子水平上,适应性诱变是通过上调通常属于y家族的特异性易出错DNA聚合酶的表达来介导的,例如大肠杆菌中dinB基因的多肽产物。然而,与大肠杆菌不同的是,在应激条件下,结核分枝杆菌中dinB同源物的表达并不上调。这些研究表明,分枝杆菌中的DinB同源物可能不能促进错配并参与适应性突变。我们发现耻垢分枝杆菌的代表性同源物(MsDpo4)可以进行模板依赖性核苷酸整合,因此是一种DNA聚合酶。此外,可以看出MsDpo4也具有误合并的能力,具有显著的促进G:T和T:G错配的能力。这两种错配的错配频率与古细菌和原核生物同源物的错配频率相似。总的来说,我们的数据表明MsDpo4具有促进过渡突变的能力,并且可以潜在地赋予基因组可塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nucleic Acids
Journal of Nucleic Acids BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
3.10
自引率
21.70%
发文量
5
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信