Linda Ney, Jakob Hog, Rajveer Singh, Nathalie Göttlicher, Patrick Schneider, Sebastian Tepner, Matthias Klingele, Roman Keding, Florian Clement, Ulf Groos
{"title":"Challenges of fabricating catalyst layers for PEM fuel cells using flatbed screen printing","authors":"Linda Ney, Jakob Hog, Rajveer Singh, Nathalie Göttlicher, Patrick Schneider, Sebastian Tepner, Matthias Klingele, Roman Keding, Florian Clement, Ulf Groos","doi":"10.1007/s11998-022-00710-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, flatbed screen printing is evaluated regarding its capability to produce catalyst layers of PEM fuel cells. In the field of printed electronics, screen printing is regarded as robust and high-throughput coating technology. The possibility of in-plane structuring could be an additional degree of freedom, enabling more complex designs of catalyst layers in the future. In this study, process parameters are varied to investigate their effect on resulting layer thickness, homogeneity, and Pt-loading. With the usage of different screens, the Pt-loading can be adjusted. Additionally, two different pastes with and without water content are investigated. The catalyst paste without water showed a better process stability during printing and performed best under dry conditions (RH = 40%) and worst under wet conditions (RH = 100%) during electrochemical in-situ testing. Overall, the reproducibility of the CCM production process was verified. The viscosity of the catalyst paste with 19.55 wt% water in solvent was higher compared to the paste without water. Furthermore, a carbon paste (Pt-free) is developed in a similar viscosity range as the catalyst pastes. The main challenge of screen printing process development lies in the paste optimization to prevent evaporation effects over time, ensuring sufficient wetting of the paste on the substrate and sufficient fuel cell performance.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":"20 1","pages":"73 - 86"},"PeriodicalIF":2.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-022-00710-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-022-00710-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, flatbed screen printing is evaluated regarding its capability to produce catalyst layers of PEM fuel cells. In the field of printed electronics, screen printing is regarded as robust and high-throughput coating technology. The possibility of in-plane structuring could be an additional degree of freedom, enabling more complex designs of catalyst layers in the future. In this study, process parameters are varied to investigate their effect on resulting layer thickness, homogeneity, and Pt-loading. With the usage of different screens, the Pt-loading can be adjusted. Additionally, two different pastes with and without water content are investigated. The catalyst paste without water showed a better process stability during printing and performed best under dry conditions (RH = 40%) and worst under wet conditions (RH = 100%) during electrochemical in-situ testing. Overall, the reproducibility of the CCM production process was verified. The viscosity of the catalyst paste with 19.55 wt% water in solvent was higher compared to the paste without water. Furthermore, a carbon paste (Pt-free) is developed in a similar viscosity range as the catalyst pastes. The main challenge of screen printing process development lies in the paste optimization to prevent evaporation effects over time, ensuring sufficient wetting of the paste on the substrate and sufficient fuel cell performance.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.