Adapting the Right Measures for Pattern Discovery: A Unified View.

Junjie Wu, Shiwei Zhu, Hui Xiong, Jian Chen, Jianming Zhu
{"title":"Adapting the Right Measures for Pattern Discovery: A Unified View.","authors":"Junjie Wu,&nbsp;Shiwei Zhu,&nbsp;Hui Xiong,&nbsp;Jian Chen,&nbsp;Jianming Zhu","doi":"10.1109/TSMCB.2012.2188283","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a unified view of interestingness measures for interesting pattern discovery. Specifically, we first provide three necessary conditions for interestingness measures being used for association pattern discovery. Then, we reveal one desirable property for interestingness measures: the support-ascending conditional antimonotone property (SA-CAMP). Along this line, we prove that the measures possessing SA-CAMP are suitable for pattern discovery if the itemset-traversal structure is defined by a support-ascending set enumeration tree. In addition, we provide a thorough study on the family of the generalized mean (GM) measure and show their appealing properties, which are exploited for developing the GMiner algorithm for finding interesting association patterns. Finally, experimental results show that GMiner can efficiently identify interesting patterns based on SA-CAMP of the GM measure, even at an extremely low level of support. </p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"1203-14"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2012.2188283","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2012.2188283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/3/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a unified view of interestingness measures for interesting pattern discovery. Specifically, we first provide three necessary conditions for interestingness measures being used for association pattern discovery. Then, we reveal one desirable property for interestingness measures: the support-ascending conditional antimonotone property (SA-CAMP). Along this line, we prove that the measures possessing SA-CAMP are suitable for pattern discovery if the itemset-traversal structure is defined by a support-ascending set enumeration tree. In addition, we provide a thorough study on the family of the generalized mean (GM) measure and show their appealing properties, which are exploited for developing the GMiner algorithm for finding interesting association patterns. Finally, experimental results show that GMiner can efficiently identify interesting patterns based on SA-CAMP of the GM measure, even at an extremely low level of support.

适应模式发现的正确方法:一个统一的观点。
本文提出了一种统一的有趣模式发现的有趣度度量方法。具体来说,我们首先提供了用于关联模式发现的兴趣度度量的三个必要条件。然后,我们揭示了兴趣度度量的一个理想性质:支持升序条件反单调性(SA-CAMP)。沿着这条思路,我们证明了如果项集遍历结构由支持升序集枚举树定义,则具有SA-CAMP的度量适用于模式发现。此外,我们对广义均值(GM)测度家族进行了深入的研究,并展示了它们吸引人的特性,这些特性被用于开发GMiner算法来寻找有趣的关联模式。最后,实验结果表明,即使在极低的支持水平下,基于GM度量的SA-CAMP, GMiner也能有效地识别出有趣的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
6.0 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信